
Further Applications

� Summation of Series

Ú¥
n=-¥

f HnL = - Π Ú
n

Res 8 f HznL cotH Π zn L <   
Ú¥

n=-¥

H-Ln f HnL = - Π Ú
n

Res 8 f HznL cscH Π zn L <   
where zn are the poles of f HzL.     

� proof

The major step in the proof is to show that 

gHzL = Π cotH Π z L
has simple poles at z = n with residue 1.

Given the above, the 1st formula is obtained by considering the contour integral which encloses the entire z-plane.

Let gHzL = Π cotH Π z L = Π
cosHΠ zL
sinHΠ zL

�  poles of gHzL are simple & at z = n.

Res
z=n

gHzL = Π
cosHΠ zL

d

d z
sinHΠ zL

z=n

= 1

To evaluate 

SN = ÚN
n=-N

f HnL
we use a contour CN  which is a square that is centered at z = 0 & intersects the real axis at x = ± JN +

1

2
N:

� �cN
dz gHzL f HzL = 2 Π i : ÚN

n=-N
f HNL + Ú

k
Res @ f HzkL Π cotH Π zk L D >

where k  runs over all poles of f   inside CN .

As N � ¥,  �cN
dz gHzL f HzL �0  since f

z ® ¥
0 if S converges.  QED.

Proof for the 2nd formula is analogous. All we need is

Res
z=n

Π cscHΠ zL = Π
1

d

d z
sinHΠ zL

z=n

=
1

cosHΠ nL = H-Ln

� Example

S = Ú¥
n=-¥

H-Ln

H a + n L2

f HzL =
1

H a + z L2
with 2nd order pole at z = -a

S = - Π Res
z=-a

: 1

H a + z L2
cotH Π z L >

   = - Π : d

d z
cscH Π z L >

z=-a

   = Π2 cosHΠ aL
sin2HΠ aL

� Asymptotic Series



�

Asymptotic Series

� Definition

Let 

SN = ÚN
n=0

An

zn S = Ú¥
n=0

An

zn  

If 

f HzL = ΦHzL S

lim
z ® ¥

: zN B f HzL
ΦHzL - SN F > = 0

� S represents 
f HzL
ΦHzL  asymptotically.

Note:
Usually, S  diverges & there is an optimal N  which gives the best approximation.

� Example

Exponential Function:

EiHxL = Ù
-¥

x

dt e t

t

E1HxL = Ù
x

¥

dt e-t

t
= -EiH-xL

          = -Ù
x

¥

d e-t ×
1

t
= -J e-t

t
N
x

¥

- Ù
x

¥

dt e-t

t2
  

          = e-x

x
- Ù

x

¥

dt e-t

t2

          = e-x

x
-

e-x

x2
+ 2 Ù

x

¥

dt e-t

t3

          = e-x

x
-

e-x

x2
+ 2 e-x

x3
- 3 ! Ù

x

¥

dt e-t

t4

          = e-x

x
:1 -

1

x
+

2!

x2
-

3!

x3
+ … + H-Ln n!

xn > + H-Ln+1 Hn + 1L ! Ù
x

¥

dt e-t

tn+2

          = e-x

x
Sn + H-Ln+1 Hn + 1L ! Ù

x

¥

dt e-t

tn+2

where Sn = 1 -
1

x
+

2!

x2
-

3!

x3
+ … + H-Ln n!

xn = Ún

m=0
H-Lm m!

xm           

Cauchy Test:

lim
m ® ¥

Hm+1L!

xm+1

m!

xm

= lim
m ® ¥

Hm+1L
x

� ¥

\ S = lim
n ® ¥

Sn  diverges.

On the other hand:

lim
x ® ¥

H x n @ E1HxL x ex - SnD L
       = lim

x ® ¥

xn+1 ex H-Ln+1 Hn + 1L ! Ù
x

¥

dt e-t

tn+2

       < lim
x ® ¥

x-1 ex H-Ln+1 Hn + 1L ! Ù
x

¥

dt e-t

       = lim
x ® ¥

9 x-1 H-Ln+1 Hn + 1L ! =
       = 0

\ E1HxL =
e-x

x
S  is an asymptotic representation.

The error involved in using the Sn is

H-Ln+1 Hn + 1L ! Ù
x

¥

dt e-t

tn+2

       < H-Ln+1 Hn + 1L !
1

xn+2 Ù
x

¥

dt e-t

       = H-Ln+1 Hn + 1L !
1

xn+2
e-x
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On the other hand:

lim
x ® ¥

H x n @ E1HxL x ex - SnD L
       = lim

x ® ¥

xn+1 ex H-Ln+1 Hn + 1L ! Ù
x

¥

dt e-t

tn+2

       < lim
x ® ¥

x-1 ex H-Ln+1 Hn + 1L ! Ù
x

¥

dt e-t

       = lim
x ® ¥

9 x-1 H-Ln+1 Hn + 1L ! =
       = 0

\ E1HxL =
e-x

x
S  is an asymptotic representation.

The error involved in using the Sn is

H-Ln+1 Hn + 1L ! Ù
x

¥

dt e-t

tn+2

       < H-Ln+1 Hn + 1L !
1

xn+2 Ù
x

¥

dt e-t

       = H-Ln+1 Hn + 1L !
1

xn+2
e-x

� Properties

1. Function represented by asymptotic expansion is not unique.

eg.
f

Φ
  &  

f

Φ
+ e-z  have the same expansion.

2. Phase change in z  often produces discontinuities ( Stokes Phenomena ).

3. Asymptotic series can be added, multiplied & integrated.

4. Differentiation of asymptotic series is valid only if the derivative function also has an asymptotic series expansion.

� Method of Steepest Descent
( Saddle Point Method )

1st Term

� Formula

Ùc
dt g HtL ez f HtL = Ú

s
g HtsL ez f H ts L ei Τs

2 Π

z f '' HtsL

   = Ú
s

H± L g HtsL ez f H ts L 2 Π

z f '' HtsL

where z >> 1 , 

gHtL »const near the saddle points ts,

 ez f HtL = 0 at the end points of c.

& 2 Τs = ± Π - Arg f ' ' HtsL - Arg z

with the sign chosen to conform with the original contour.
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� Proof

We shall begin with the integral

IHzL = Ùc
dt ez f HtL

Consider a  saddle points ts of f  

ie.  f ' HtsL = 0.

Let f HtL = f HtsL +
1

2
f ' ' HtsL Ht - tsL2 + …

f ' ' HtsL = f ' ' HtsL ei Φ

t - ts = T ei Τ

z = z ei Ζ

Keeping only terms up to the 2nd order in T:

z f HtL = z f HtsL +
1

2
z f ' ' HtsL ei H Ζ+ Φ +2 Τ L T2

         = z f(tsL +
1

2
z f ' ' HtsL T2 8 cos H Ζ + Φ + 2 Τ L + i sin H Ζ + Φ + 2 Τ L <

Now, c or Τ is chosen such that along c,

1.  Re 8 z @ f HtL - f HtsLD < is a maximum

2.  Im 8 z @ f HtL - f HtsLD < = const near ts.

This can be accomplished by setting

Ζ + Φ + 2 Τ = ± Π

so that  z 8 f HtL - f HtsL< = Re 8 z @ f HtL - f HtsLD < 
             = -

1

2
z f ' ' HtsL T2    

             < 0

on c near ts: dt = ei Τ dT ( Τ = const )

Thus, near ts, the contibution to IHzL is:

IsHzL = ez f HtsL ei Τ Ùcs
dT e-

1

2
z f '' HtsL T2

where cs is the portion ( Τ = const ) of the deformed c which goes through ts.

Since z >> 1, we can replace Ùcs
dT by 2 Ù

0

¥

dT.

� Ùcs
dT e-

1

2
z f '' Ht0L T2

>

2 Π

z f '' HtsL

 IsHzL = ez f HtsL ei Τ 2 Π

z f '' HtsL
where 2 Τ = ± Π - Φ - Ζ

     = ± Π - Arg f ' ' HtsL - Arg z

with the sign chosen to conform with the original contour.

Away from the saddle points, Im 8 z @ f HtL - f HtsLD <  varies rapidly so that contributions from different parts  of the contour

cancels each other. It is therefore a good approximation to write:

IHzL = Ú
s

IsHzL

       = Ú
s

ez f H ts L ei Τs
2 Π

z f '' HtsL
where        2 Τs = ± Π - Φs - Ζ

Substituting Τ into the last expression gives

IsHzL = ± ez f HtsL - 2 Π

z f '' HtsL
with the sign is again chosen to conform with the original contour.

Actually, this result can be directly arrived at following the previous derivation but without introducing all the phase angles. 
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Substituting Τ into the last expression gives

IsHzL = ± ez f HtsL - 2 Π

z f '' HtsL
with the sign is again chosen to conform with the original contour.

Actually, this result can be directly arrived at following the previous derivation but without introducing all the phase angles. 

It's easy to see that

Ùc
dt g HtL ez f HtL = Ú

s
g HtsL ez f H ts L ei Τs

2 Π

z f '' HtsL

= Ú
s

H± L g HtsL ez f H ts L 2 Π

z f '' HtsL
provided g > const  near each saddle point.

More precisely, we require  D g << D ez f   near each ts.

This is satisfied for any rational function g.

� Example HΝ
H1LHsL

HΝ
H1LHsL =

1

Π i Ùc
dz e

s

2
z-

1

z

zΝ+1
( s real & >> 1 )

where c goes from z = 0 with initial zero slope via the upper plane to z = H-¥, 0L asymptotically along the negative x-axis. (

See Arfken, 3rd ed.,  eg 7.4.1. )

Let f HzL =
1

2
Jz -

1

z
N gHzL =

1

Π i zΝ+1

� f ' =
1

2
J1 +

1

z2
N

The saddle point in the upper plane is  z0 = i. 

� f Hz0L = i gHz0L = -
1

Π iΝ

f ' ' = -
1

z3
f ' ' Hz0L = - i = ei

3 Π

2

� Φ =
3 Π

2
Τ = ±

Π

2
-

3 Π

4
= -

Π

4
or -

5 Π

4

To conform with the original c, we must have Τ = -
5 Π

4

� HΝ
H1LHsL = J-

1

Π iΝ N ei s e-
5 Π

4
2 Π

s

= ei s - i
Π

2
JΝ+

1

2
N 2

Π s

If we are to use the other formula, all the phase calculations can be omitted & we arrive directly at:

HΝ
H1LHsL = -J-

1

Π iΝ N ei s 2 Π

s i

where the negative overall sign is used because the upper limit of the original contour is -¥.

� Example G(z)

GHz + 1L = z != Ù
0

¥

dx xz e-x ( z >> 1 )

The original contour is along the positive real axis.

To put the integral into a form to which the saddle point method is applicable, let

x = z t

� dx = z dt xz = zz tz t Î @ 0, ¥ L
z != zz+1 Ù

0

¥

dt tz e- z t

    = zz+1 Ù
0

¥

dt ezH ln t - t L

Let f HtL = ln t - t

� f ' =
1

t
- 1

\ saddle point at  t0 = 1   

f H1L = -1   

f ' ' = -
1

t2
� f ' ' H1L = -1 = ei Π ( Φ = Π )

z = z ei Ζ

2 Τ = ± Π - Π - Ζ = -Ζ   or  -2 Π - Ζ

Τ = -
Ζ

2
  or  -Π -

Ζ

2

We must use Τ = -
Ζ

2
 to conform with the original contour. ( This is obvious for the case of z real, ie. Ζ = 0).

z != zz+1 e-z e-i
Ζ

2
2 Π

z

    = zz+1 e-z 2 Π

z

    = zz+
1

2 e-z 2 Π
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The original contour is along the positive real axis.

To put the integral into a form to which the saddle point method is applicable, let

x = z t

� dx = z dt xz = zz tz t Î @ 0, ¥ L
z != zz+1 Ù

0

¥

dt tz e- z t

    = zz+1 Ù
0

¥

dt ezH ln t - t L

Let f HtL = ln t - t

� f ' =
1

t
- 1

\ saddle point at  t0 = 1   

f H1L = -1   

f ' ' = -
1

t2
� f ' ' H1L = -1 = ei Π ( Φ = Π )

z = z ei Ζ

2 Τ = ± Π - Π - Ζ = -Ζ   or  -2 Π - Ζ

Τ = -
Ζ

2
  or  -Π -

Ζ

2

We must use Τ = -
Ζ

2
 to conform with the original contour. ( This is obvious for the case of z real, ie. Ζ = 0).

z != zz+1 e-z e-i
Ζ

2
2 Π

z

    = zz+1 e-z 2 Π

z

    = zz+
1

2 e-z 2 Π

If we are to use the other formula, all the phase calculations can be omitted & we arrive directly at:

z != zz+1 e-z 2 Π

z

� Asymptotic Series 

� Theory

Keeping the higher order terms in the series

f HtL = f HtsL +
1

2
f ' ' HtsL Ht - tsL2 + …

gives us an asymptotic series of the integral.

For simplicity, we'll treat only the case

IHzL = Ùc
dt ez f HtL

with a single saddle point. Generalization to more complicated situations should be straightforward.

To begin, let

f HtL = f HtsL - w2

where w  is real.

� IHzL = ez f HtsL Ùc
dt e-z w2

       = ez f HtsL Ùc
dw d t

d w
e-z w2

Expanding d t

d w
 as a power series:

d t

d w
= Ú¥

n=0
an w n

where only even power need be retained.

� IHzL = Ú¥
n=0

an ez f HtsL Ùc
dw w n e-z w2

       > ± Ú¥
n=0

an ez f HtsL Ù
-¥

¥

dw w n e-z w2

       = ± Ú¥
n=0

a2 n ez f HtsL GJn +
1

2
N 1

z
n+

1

2

with the sign chosen to conform with the original contour.               
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To begin, let

f HtL = f HtsL - w2

where w  is real.

� IHzL = ez f HtsL Ùc
dt e-z w2

       = ez f HtsL Ùc
dw d t

d w
e-z w2

Expanding d t

d w
 as a power series:

d t

d w
= Ú¥

n=0
an w n

where only even power need be retained.

� IHzL = Ú¥
n=0

an ez f HtsL Ùc
dw w n e-z w2

       > ± Ú¥
n=0

an ez f HtsL Ù
-¥

¥

dw w n e-z w2

       = ± Ú¥
n=0

a2 n ez f HtsL GJn +
1

2
N 1

z
n+

1

2

with the sign chosen to conform with the original contour.               

The main job is to find a2 n.

By integration from ts to t , we see that

t - ts = Ú¥
n=0

an
w n+1

n + 1
( wHtsL = 0 )

        = Ú¥
n=1

an-1
w n

n

On the other hand,

w2 = f HtL - f HtsL = Ú¥
n=2

An Ht - tsLn

where An = -
1

n!
f HnLHtsL

The calculation of a2 n is then just the inversion of the power series of w2.

There are many ways to do so, one of which is by contour integration. ( see Morse & Feshbach ). 

A more elementary way is to substitute the series of t - ts  into that of w2  & collect coefficients. Thus, putting T = t - ts, we

have

w2 = Ú¥
n=2

An : Ú¥
m=1

am-1
w m

m
>n

    = Ú¥
n=2

An 9 a0 w +
a1

2
w2 +

a2

3
w3 + … =n

    = Ú¥
n=2

An a0
n wn :1 +

a1

2 a0
w +

a2

3 a0
w2 + … >n

    = A2 a0
2 w2 :1 +

a1

2 a0
w +

a2

3 a0
w2 + … >2

        + A3 a0
3 w3 :1 +

a1

2 a0
w +

a2

3 a0
w2 + … >3

        + A4 a0
4 w4 :1 +

a1

2 a0
w +

a2

3 a0
w2 + … >4

+ …

�

w2 : 1 = A2 a0
2

w3 : 0 = A2 a0
2 a1

a0
+ A3 a0

3

w4 : 0 = A2 a0
2 : J a1

2 a0
N2

+ 2
a2

3 a0
> + A3 a0

3 ×
3 a1

2 a0
+ A4 a0

4     

Hence:

a0 =
1

A2

a1 = -
A3

A2
a0

2 = -
A3

A2
2

0 = A2
a1

2

4
+

2

3
A2 a0 a2 +

3

2
A3 a0

2 a1 + A4 a0
4

   = 1

4

A3
2

A2
3

+
2

3
A2 a2 -

3

2

A3
2

A2
3

+
A4

A2
2
  

� a2 =
3

2 A2

: 5

4

A3
2

A2
3

-
A4

A2
2

>    
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The main job is to find a2 n.

By integration from ts to t , we see that

t - ts = Ú¥
n=0

an
w n+1

n + 1
( wHtsL = 0 )

        = Ú¥
n=1

an-1
w n

n

On the other hand,

w2 = f HtL - f HtsL = Ú¥
n=2

An Ht - tsLn

where An = -
1

n!
f HnLHtsL

The calculation of a2 n is then just the inversion of the power series of w2.

There are many ways to do so, one of which is by contour integration. ( see Morse & Feshbach ). 

A more elementary way is to substitute the series of t - ts  into that of w2  & collect coefficients. Thus, putting T = t - ts, we

have

w2 = Ú¥
n=2

An : Ú¥
m=1

am-1
w m

m
>n

    = Ú¥
n=2

An 9 a0 w +
a1

2
w2 +

a2

3
w3 + … =n

    = Ú¥
n=2

An a0
n wn :1 +

a1

2 a0
w +

a2

3 a0
w2 + … >n

    = A2 a0
2 w2 :1 +

a1

2 a0
w +

a2

3 a0
w2 + … >2

        + A3 a0
3 w3 :1 +

a1

2 a0
w +

a2

3 a0
w2 + … >3

        + A4 a0
4 w4 :1 +

a1

2 a0
w +

a2

3 a0
w2 + … >4

+ …

�

w2 : 1 = A2 a0
2

w3 : 0 = A2 a0
2 a1

a0
+ A3 a0

3

w4 : 0 = A2 a0
2 : J a1

2 a0
N2

+ 2
a2

3 a0
> + A3 a0

3 ×
3 a1

2 a0
+ A4 a0

4     

Hence:

a0 =
1

A2

a1 = -
A3

A2
a0

2 = -
A3

A2
2

0 = A2
a1

2

4
+

2

3
A2 a0 a2 +

3

2
A3 a0

2 a1 + A4 a0
4

   = 1

4

A3
2

A2
3

+
2

3
A2 a2 -

3

2

A3
2

A2
3

+
A4

A2
2
  

� a2 =
3

2 A2

: 5

4

A3
2

A2
3

-
A4

A2
2

>    

It is clear the process is tedious & error prone. 

Anyone who intend to further develope the proceedings is strongly advised to use one of the symbolic manipulation programs

such as mathematica.

� Example G(z)

 f HtL = ln t - t

� f ' =
1

t
- 1

\ saddle point at  t0 = 1   

f H1L = -1   

f ' ' = -
1

t2
� f ' ' H1L = -1 A2 =

1

2

f ' ' ' =
2

t3
� f ' ' ' H1L = 2 A3 = -

1

3

f H4L = -
6

t4
� f H4L H1L = -6 A4 =

1

4

\ a0 = 2

a2 =
3

2
9 5

4
×

8

9
- 1 = =

1

3 2

z != e-z zz+1 : 2 GJ 1

2
N 1

z
+

1

3 2
GJ 3

2
N z-

3

2 + …>
    = e-z zz+1 2 Π : z-

1

2 +
1

12
z-

3

2 + …>
    = e-z zz+

1

2 2 Π :1 +
1

12 z
+ …>
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