Further Applications

= Summation of Series

()

Y f(m=-7m% Res{f(z)cot(nz)}

N=—o00 n

S (" fm=-x3 Res{f(z)csAnzy)}

N=—co0 n

where z, arethe polesof f(2).

= proof

Themajor step in the proof is to show that
g(2=ncot(rz)
has simple polesat z= n with residue 1.
Giventhe above, the 1st formulais obtained by considering the contour integral which enclosesthe entire z-plane.

cogr 2)
sin(r 2)

Let g@=rcol(nz)=nm

— polesof g(z) aresimple & at z=n.

Resg(2) = (n =xa ) =1
z=n
7=

—sinnz
3 Snr2)

To evaluate
N
SN= 2 fm
n=-N
we use a contour Cy which isa sgquare that is centeredat z= 0 & intersectsthereal axisat x = + (N + %)

— fCN dz g(2) f(z)=2ni{ngN

wherek runsover al polesof f inside Cy.

f(N)+zk Res[ f(zk)ﬂcot(ﬂzk)]}

AsN — oo, §CN dzg(2) f(2—0 since | f |—>0ifSconverges. QED.

|Z]| >

Proof for the 2nd formulais analogous. All we needis

1 1
Resmcsc(r2)=| n = —(=)"
z=n ) [ %S’n(nz) )Z cos(x n) =)

s Example

S— E’: or

(a+n)?

N=—o00

f(2) = ;2 with 2nd order poleat z= -a
(a+2)

S=-n R&s{ ! cot(nz)}

z=—a \ (a+2)?

d

-7 { ECSC(NZ)}
2 CoS(ra)
sin’(ra)

z=-a
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Asymptotic Series

= Definition
Let

S=3 % s=3 &

n=0 z n=0 z

If

f(9=¢(2S

; N[ 1@ -

é:Tw {Z [¢(z> S\‘]}_O

=  Srepresents ;% asymptotically.

Note:
Usualy, S diverges& thereisan optima N which givesthe best approximation.

= Example

Exponential Function:

Eio= [dt &
Ex(X) = Tdt e = —Ei(-x)

- 1 ety % et
= -{det.?z_prk._{m-g

0 g (g &
= G- t25 -3 [d S
X
_ e 1,2 2 IO AR Vlde £
- X{l 1+ 2 X3+...+()Xn}+() (n+D)! fdt =
X
_ & n+1 ° e'
_-7&+@J+m+DUﬂﬁm
X
_ 1.2 3 ant Q4 m m
WhereS1_1—;+;—;+...+(—) =2 O"F
m=0
Cauchy Test:
e
lim [ £=[= lim @2
m- oo — m- oo |X|

xm

S=1lim S, diverges.

N—-oo



On the other hand:
lim (x"[Ex(x) x€ - &)

X— o0

tn+2

= lim [x”+1e%(—)”+1(n+1)zfdt e ]

X— oo

X—= o0

<lim (xlex(—)“+1(n+ 1! ?dt etJ
= lim {x* ()™ (n+1)!}
X—= 0o

=0

Ei(x) = ixx S isan asymptotic representation.

Theerrorinvolvedin using the S, is

tn+2

O™+ D! [dt &
X
<(9)™L(n+1)! % det gt

= (9™ (n+ ! % ex

m Properties

1 Function represented by asymptotic expansion is not unique.
f f _ .
eg. 7 & ;e Z have the same expansion.
2. Phase changein z often produces discontinuities ( Stokes Phenomena).
3. Asymptotic series can be added, multiplied & integrated.
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4, Differentiationof asymptotic seriesis valid only if the derivativefunction also has an asymptotic series expansion.

= Method of Steepest Descent
( Saddle Point Method)

1st Term

= Formula

|2f "t

_ f(ts) / 27
= Esl(i)g(ts)ez ()

where | z|>> 1,
g(t) ~const near the saddle pointsts,

&' = 0 at the end points of c.
& 21rs=+n—Argf "(ts) —Argz

[dghe V=3 gty e & [ 2"
S

with the sign chosen to conformwith the original contour.
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= Proof

We shall begin with theintegral
I(2)= [dter'®

Consider a saddle pointstg of f

ie f 'ty =0.

Let  fO)=ftg+5 ") (t—12+...
friag=|f" )€’
t—ts=Té€"
z=|z| €¢

Keeping only terms up to the 2nd order in T:

2t =zft)+3 |zt "ty | &ererzn T2

= 2f(Y+3|zf "(t)| T2Hcos({+ ¢ +27)+isn(L+¢ +27))

Now, c or 7 is chosen such that along c,

1 Re{z[f(t) - f(ty)] } isamaximum

2. Im{z[f(t) - f(ty)] } = const near tg.

This can be accomplished by setting

(+P+2T1==%n1

o that z{f@t) - f(ty)} =Re{z[f(t) - f(ts)]}
= —%‘zf "t | T
<0

onc neartg dt=€7dT  (r=const)

Thus, near ts, the contibutionto 1(2) is:
T2

1 "
l(2) = 1 e"chdTe_5|Zf ()

where ¢ isthe portion ( 7 = const ) of the deformed ¢ which goes through ts.

Since | z| >> 1, wecanreplace [ dT by 2 [ dT.
0

Lztrty| T2 [ 2
— LdTe Z‘Z 0‘ ~ —\Zf"n(ts)|

_zflty AT 2n
1(2) = € e BT

where 21=xn1-¢—-¢
= +x-Argf " (t)—-Argz
with the sign chosen to conformwith the original contour.

Away from the saddle points, Im{ z[f(t) — f(ts)]} varies rapidly so that contributions from different parts of the contour

cancelseach other. It is thereforea good approximation to write:
1(2)=2 152
S

i 2n
- er(ts) gTs
ZS |zf"(ts) |

where 27s=x 1 —¢ps— ¢
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Substituting 7 into the last expression gives

_ f(ts) —-2r
=+ [ —==
ls(2) =+ &' )

with the sign is again chosen to conformwith the original contour.
Actually, this result can be directly arrived at following the previous derivation but without introducing all the phase angles.

It's easy to seethat

fcdtg(t) egfo :zsl gty () @t ‘Zfzuz(rts)l

_ f(ts 2n
= Lo [

provided g ~ const near each saddle point.
More precisely, werequire |Ag|<< | A€*" | near eachts.
Thisis satisfied for any rational function g.

= Example H, D (s)

Hv(l)(s)=ﬂ—1ifcdzez—;) (sred & >>1)

5[17
Zv+1
where ¢ goes from z= 0 with initial zero slope via the upper planeto z= (-0, 0) asymptotically along the negative x-axis. (
SeeArfken, 3rded., eg7.4.1.)

1 1 1
Letf(2)=1(z- 2) 9D = —

' 1 1
— f'= > (1+ ;)

Thesaddle point in the upper planeis zy = i.

—  f(2)=i 9(z0) = - =
fr=-2 fra)=—i=d?
z
A S S R
To conformwith the original ¢, we must haver = — 57”

51

—  HO9=(-F)eceT |2

If we are to use the other formula, al the phase cal culations can be omitted & we arrivedirectly at:

mi’ si

HO( =~(-)es [ 2
where the negative overall sign is used because the upper limit of the original contour is —co.
= Example I'(z)

I(z+1)=z!= [dx e (|z]>>1)
0
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Theoriginal contour is along the positivereal axis.

To put the integral into aformto which the saddle point method is applicable, let
x =zt

— dx = zdt Xt =Z2t* t [0, o)

z1=7" [dt e ™
0

— Zz+lofdt ez(lnt—t)
0

Letf(t)=Int —t
— f'ztl—l

saddlepointat tg=1

f(l)=-1

f":—tiz —  frM)=-1=¢é" (¢=n)
z=|z] €¢

21=xm —-n—-{=-{ of —2n—¢

¢ ¢
T—20r71'2

Wemust uset = — % to conformwith the original contour. ( Thisis obviousfor the case of zredl, ie. £ = 0).

z1=7Z1e?¢’ : |2
’ 4]

— Zz+1 ez

27
z
eZ+N2n

If we are to use the other formula, all the phase cal culations can be omitted & we arrivedirectly at:
z1=71e? | Zn
z

= Asymptotic Series

N

.

= Theory

Keeping the higher order termsin the series
f)=ftg+3 "t t—t9?+...
gives us an asymptotic series of theintegral.
For simplicity, we'll treat only the case
I(2)= [dter'®
with a single saddle point. Generalizationto more complicated situations should be straightforward.



Tobegin, let
fty=f(t)-w?
wherew isreal.
— @)=t [die?
e [dw S g2
Expanding g—\;l as a power series:

dt & n
— =3 anw
dw

n=0

where only even power need be retained.

—  1@=3 a 1o [dw w" e
n=0

—00

~+ Y a ez fity) f dw wh e2W
n=0

= =Y apn er(ts)F(n+%) L
n= sz

0

with the sign chosen to conformwith the original contour.

Themain jobistofind ayp.
By integrationfromtstot , we see that

o n+1
t-ts=% ar—  (Wt)=0)
n=0

(e8]
= an-1
n=1

On the other hand,
W= () - f(t) =3 Aglt—ty"
n=2

wh
n

where An=-2 £

Thecaculation of ayy, is then just the inversion of the power series of w2,
Thereare many waysto do so, one of which is by contour integration. ( see Morse & Feshbach).
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A more elementary way is to substitute the series of t — ts into that of w? & collect coefficients. Thus, putting T =t — ts, we

have
n

W2=§ An{élam-lwﬁm}

n=2

n=2

Azaozwz{1+ ;—;W+ ;—;OWZ+...

> Ar{aow+ 2wt Zui )

S n Ay 2 n
nZzzAnao V\f'{l+ 2o W Sa0W2+...}

;
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+A3a03w3{1+iw+ % W2+...}3

+A4304vv4{1+ 2w+ 2WZ+...}4+...

BN
Wo:  1=Aya?
w3 O=A2a02%+A3a03

wh: 0=A2302{(i)2+2;—;0}+A3303'%+A4304

23
Hence:
1
a0=—
VA
A2 A
a;=—-= =3
1 AQGO 2
a’ 2 3 2 4
O:A27+§A2aoa2+§A3a0 a1+A4ao
1A% 2 [ 3 AP A
4 AS 3 A2 & 2 A8 A2
3 5 A2 A4}
e (2 A
2 4 A? A2

Itisclear the processis tedious & error prone.
Anyonewho intend to further devel opethe proceedingsis strongly advised to use one of the symbolic manipulation programs
such as mathematica.

m Example '
f()=Int —t
—  fl=z-1
saddle pointat tg=1
f()=-1
fr=—g — fr@®=-1 A=
e 2 1
@__8 @ (1) = -1
f&@= " — f91Q)=-6 As=7
20=v2
3 (58 1
== (2.2 _ql-_=_
& \/?{4 9 } 3v2
_ ezl 1) 1 1 3\ -
zl=e?27Z {\/?F(z)ﬁ+—3 2l"(2)22+ }
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