Further Applications

= Summation of Series

0o

> fm=-x ) Res{f(z)cot(rz)}

ST fm=-x Y Rest faese(rzn) )

where z, are the poles of f(2).

= proof

The major step in the proof isto show that
g(2=ncot(rz)
has simple poles at z= n with residue 1.
Given the above, the 1st formulais obtained by considering the contour integral which encloses the entire z-plane.

cos(rr 2)
Let 0(2= nmcot(nz)=nm

sin(r 2)
— polesof g(2) are simple & at z=n.
cos(rr 2)
Resg(29= |7 ——— =1
L sinr2)
dz z=n

To evaluate

N
Sv= > fm
n=—N

we use a contour Cy which isasguare that is centered at z= 0 & intersectsthereal axisat X = + (N + %)

N
— 9§dzg(z)f(z)=2ni{z TN+ Res[f(zk)ncot(nzk)]}
Cn K

n=—N
wherek runsover al polesof f inside Cy.

AsN — oo, 95 dzg(2) f (27— 0 since|f|——— 0if S converges. QED.
CN

‘Z‘%oo

Proof for the 2nd formulais analogous. All we need is

1 1
Resrcsc(mz)= |« = =(-)"
z=n 94 Sin(r2) cos(z n)
dz z=n

= Example

[eS] (_)n

s=y ——
(a+n)?

N=-c0
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1
f(2= —— with2nd order poleat z= -a
(a+ z)?
1
S=—nr Res{
z=-a (a+ z)?
-7 { iCSC(7rZ)}
d

z z=-a

Cot(nz)}

, cos(ra)

=TT
sin’(r a)

Asymptotic Series

m Definition
Let
N A 0 An
Sy = Z - S= Z —_
o Z' no 2

f(o=¢(2<
_ f(2)
im {2225} -0

f(2
=  Srepresents — asymptotically.
¢#(2)

Note:
Usually, S diverges & thereisan optimal N which gives the best approximation.
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= Example

Exponential Function:
X et
Ei(x) = fdt —
t

[ee] e_t
Ei(X) = fdt — =-Ei(-x)
t
X

X X
—X —t
= —— [dt —
X t2
X
ex eX et
= ———+2 | dt —
X X2 t
e—X e—X —X —t
= ———+2—-3! | dt —
X X2 t
X
e 1 2! 3 n! et
- —{1——+———+...+(—)“—}+(—)“+1(n+1)! dt —
X X X2 X3 XN tn+2
X
e X 0 ~t
= — S+ n+D! | dt —
X tn+2
X
here's, 1 2! 3 nn! Z”: mm!
whereS=1-—+ —— —+ .. +()"—=> ()"—
X x 33 X" = Xm
Cauchy Test:
(M+1)!
) erl . (m+1)
lim ‘ ‘:Ilm — o0
m- oo ﬂ' m- co |X|
xm
S=Ilim §, diverges.
n- oo
On the other hand:

lim (x"[Ex(x) x& - ])

X— 00



4 | FurtherApplications_2.nb

(e8] e_t
= lim [ X" e ()™ (n+ 1)! dt—]
X = co tn+2

X
< lim x‘lex(—)”+1(n+l)!fdte“]
X— 00
X

= lim {x* ™+ D!}
=0
efX

Ei(X)= — S isan asymptotic representation.
X

The error involved inusing the §, is
[+ eﬁt
O™+ D! [ dt —
tn+2
X

1 (o)
<(=)"(n+ 1! —fdte“
Xn+2
X

1
= ("™ n+Dp! — e
Xn+2

m Properties
1 Function represented by asymptotic expansion is not unique.

f f

eg. — & — + €% havethe same expansion.
¢

2. Phase change in z often produces discontinuities ( Stokes Phenomena).
3. Asymptotic series can be added, multiplied & integrated.
4, Differentiation of asymptotic seriesisvalid only if the derivative function also has an asymptotic series expansion.

Method of Steepest Descent
( Saddle Point Method )

2n

dtgh e = gtget’ ™ &7 [ ———
fc ZS] | zf "ty |

where | z|>>1,
g(t) ~const near the saddle pointsts,
e = 0 at the end points of c.
& 2ts=+n—-Argf "(t) — Argz
with the sign chosen to conform with the original contour.



= Proof

Consider a saddle pointstg of f
ie f'(ty)=0.

1
Let f@)= f(ts)+£f"(ts)(t—ts)2+...

frag=[f"t)| €’
t-ts=Te"
z=|z| €¢

Keeping only terms up to the 2nd order in T

1 o
zfM=zf(ty) + E ‘ zf "(ts)‘ d({+¢+27) T2

1

= zf(t3)+5‘zf " (ty) T2{cos(§+ ¢ +21)+isSn({+¢ +271)}

Now, c or 7 is chosen such that along c,

1. Re{z[f(t) - f(ts)]} isamaximum

2. Im{z[f(t) - f(ts)]} = const near tg.

This can be accomplished by setting
{+¢+21=4%n

so that z{f®) - ftat =Re{z[f) - f(t9]}

- —%|zf "(ts)‘ T2

<0
on c near tg; dt=€7dT (7=const)
Thus, near ts, the contibutionto 1 (2) is:
. 1 "
l(2) =21 e'deTe_5|Zf ®
Cs

T2

where ¢4 isthe portion (7 = const ) of the deformed ¢ which goes through ts.

Since |z|>>l,wecanrep|acedebnydT.
Cs
0

N dee‘§|Zf"<‘0)|T2= Z—H
Cs | zf " (t) |
) 2
(=€t dr | —
| zf "(ty) |
where 21=xn1-¢-¢

= +x-Argf "(ty) —Argz
with the sign chosen to conform with the original contour.
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Away from the saddle points, Im{ z[ f(t) — f(ts)] } varies rapidly so that contributions from different parts of the contour

cancels each other. It is therefore a good approximation to write:

2= 12

S

— i) dts
-

where 27s=x 1 —¢s— ¢

2n
|z "(t) |
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Note:
Substituting 7 into the last expression gives

-2

(9= +e'®
zf"(ty

which looks simpler owing to the absence of 7. This is deceptive since the determination of the overall sign always requires
the calculation of 7.
It's easy to see that
. 2n
fdtg(t) er(t):Z g(ts)elf(ls)elfs -
c s | zf " (ty) |

provided g ~ const near each saddle point.
More precisely, werequire |Ag|<< | Ae*" | near eachts.
Thisis satisfied for any rational function g.

Further improvement on the approximation can be achieved by keeping higher order terms in the Taylor series of f. The

mathematics are more involved. | nterested readers can consult:
H.Jeffreys, B.Jeffreys, "Methods of Mathematical Physics', 3rd ed., Chap 17, (56)
P.M.Morse, H.Feshbach, "Method of Theoretical Physics', sec 4.6 (78)

= Example H, Y (s)

1 ez(zfé)
H,Y(s) = —_de (sred & >>1)
i Je Zv+l

where ¢ goes from z= 0 with initial zero slope via the upper plane to z= (-0, 0) asymptotically along the negative x-axis. (
See Arfken, 3rd ed., eg7.4.1.)

1 1 1
Let f(2) = —(z——] 92 =
2 Z ﬂ.izw-l
1 1
—  f'= —(1+—)
2 Z
The saddle point in the upper planeis z = i.
1
— f@)=i 9(Z0)= - —
i
f ! )= —i=d7
R ”(ZO: —|l=e 2
zZ
3n n 3n Vs 5n
—> ¢:— T==—-—=——0 — —
2 4 4 4
51
To conform with the original ¢, we must haver= - T

1Y s |2nm
—  HOY9=|-—|d%e 7 | —
T iv



Example I'(z)
rz+1= z!=fdxxze‘x (]z]>>1)

The original contour is along the positive real axis.
To put the integral into aform to which the saddle point method is applicable, let

X=zt
— dx=zdt Xt =72t% te[0, )
u:fﬂjﬁtﬁéﬂ
0
— ZZ+1fdt ez(lnt—t)
Let f(t)=Int —t
1
—> f': ——1

t
saddlepointat to=1

f(1)=-1
1 )
f'= -—— —  f"Q)=-1=€" (¢=n)
t2
z=|z| €¢
21=xn-n-{=-{ or 21—
¢ 4
T=—— 0O —T——
2 2
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4
Wemustuser = —— to conform with the original contour. ( Thisisobviousfor the case of zredl, ie. = 0).

z'—zz+1e‘ze z /
z+1

e?V2n

Nl»a

= 7z



