
Further Applications

� Summation of Series

â¥

n=-¥

f HnL = - Π â
n

Res 8 f HznL cotH Π zn L <   

â¥

n=-¥

H-Ln f HnL = - Π â
n

Res 8 f HznL csc H Π zn L >   

where zn are the poles of f HzL.     
� proof

The major step in the proof is to show that 
gHzL = Π cotH Π z L

has simple poles at z = n with residue 1.
Given the above, the 1st formula is obtained by considering the contour integral which encloses the entire z-plane.

Let gHzL = Π cotH Π z L = Π
cosHΠ zL
sinHΠ zL

�  poles of gHzL are simple & at z = n.

Res
z=n

gHzL = Π
cosHΠ zL

d

d z
sinHΠ zL

z=n

= 1

To evaluate 

SN = âN

n=-N

f HnL
we use a contour CN  which is a square that is centered at z = 0 & intersects the real axis at x = ± IN +

1

2
M:

� ¨
cN

d z gHzL f HzL = 2 Π i : âN

n=-N

f HNL + â
k

Res @ f HzkL Π cotH Π zk L D >
where k  runs over all poles of f   inside CN .

As N � ¥,  ¨
cN

dz gHzL f HzL � 0  since   f ¤
z ® ¥

0 if S converges.  QED.

Proof for the 2nd formula is analogous. All we need is

Res
z=n

Π cscHΠ zL = Π
1

d

d z
sinHΠ zL

z=n

=
1

cosHΠ nL = H-Ln

� Example

S = â¥

n=-¥

H-Ln

H a + n L2

f HzL =
1

H a + z L2
with 2nd order pole at z = -a

S = - Π Res
z=-a

: 1

H a + z L2
cotH Π z L >

   = - Π : d

d z
cscH Π z L >

z=-a

   = Π2
cosHΠ aL
sin2HΠ aL



f HzL =
1

H a + z L2
with 2nd order pole at z = -a

S = - Π Res
z=-a

: 1

H a + z L2
cotH Π z L >

   = - Π : d

d z
cscH Π z L >

z=-a

   = Π2
cosHΠ aL
sin2HΠ aL

Asymptotic Series

� Definition

Let 

SN = âN

n=0

An

zn
S = â¥

n=0

An

zn
 

If 
f HzL = ΦHzL S

lim
z ® ¥

: zN B f HzL
ΦHzL - SN F > = 0

� S represents 
f HzL
ΦHzL  asymptotically.

Note:
Usually, S  diverges & there is an optimal N  which gives the best approximation.
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� Example

Exponential Function:

EiHxL = à
-¥

x

d t
e t

t

E1HxL = à
x

¥

d t
e-t

t
= -EiH-xL

          = -à
x

¥

d e-t ×
1

t
= -

e-t

t x

¥

- à
x

¥

d t
e-t

t2
  

          =
e-x

x
- à

x

¥

d t
e-t

t2

          =
e-x

x
-

e-x

x2
+ 2 à

x

¥

d t
e-t

t3

          =
e-x

x
-

e-x

x2
+ 2

e-x

x3
- 3 ! à

x

¥

d t
e-t

t4

          =
e-x

x
:1 -

1

x
+

2 !

x2
-

3 !

x3
+ … + H-Ln

n !

xn
> + H-Ln+1 Hn + 1L ! à

x

¥

d t
e-t

tn+2

          =
e-x

x
Sn + H-Ln+1 Hn + 1L ! à

x

¥

d t
e-t

tn+2

where Sn = 1 -
1

x
+

2 !

x2
-

3 !

x3
+ … + H-Ln

n !

xn
= ân

m=0

H-Lm
m !

xm
          

Cauchy Test:

lim
m ® ¥

Hm+1L!

xm+1

m!

xm

= lim
m ® ¥

Hm + 1L
x

� ¥

\ S = lim
n ® ¥

Sn  diverges.

On the other hand:
lim
x ® ¥

H x n @ E1HxL x ex - SnD L

       = lim
x ® ¥

xn+1 ex H-Ln+1 Hn + 1L ! à
x

¥

d t
e-t

tn+2

       < lim
x ® ¥

x-1 ex H-Ln+1 Hn + 1L ! à
x

¥

d t e-t

       = lim
x ® ¥

9 x-1 H-Ln+1 Hn + 1L ! =
       = 0

\ E1HxL =
e-x

x
S  is an asymptotic representation.

The error involved in using the Sn is

H-Ln+1 Hn + 1L ! à
x

¥

d t
e-t

tn+2

       < H-Ln+1 Hn + 1L !
1

xn+2
à
x

¥

d t e-t

       = H-Ln+1 Hn + 1L !
1

xn+2
e-x
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On the other hand:
lim
x ® ¥

H x n @ E1HxL x ex - SnD L

       = lim
x ® ¥

xn+1 ex H-Ln+1 Hn + 1L ! à
x

¥

d t
e-t

tn+2

       < lim
x ® ¥

x-1 ex H-Ln+1 Hn + 1L ! à
x

¥

d t e-t

       = lim
x ® ¥

9 x-1 H-Ln+1 Hn + 1L ! =
       = 0

\ E1HxL =
e-x

x
S  is an asymptotic representation.

The error involved in using the Sn is

H-Ln+1 Hn + 1L ! à
x

¥

d t
e-t

tn+2

       < H-Ln+1 Hn + 1L !
1

xn+2
à
x

¥

d t e-t

       = H-Ln+1 Hn + 1L !
1

xn+2
e-x

� Properties

1. Function represented by asymptotic expansion is not unique.

eg.
f

Φ
  &  

f

Φ
+ e-z  have the same expansion.

2. Phase change in z  often produces discontinuities ( Stokes Phenomena ).
3. Asymptotic series can be added, multiplied & integrated.
4. Differentiation of asymptotic series is valid only if the derivative function also has an asymptotic series expansion.

Method of Steepest Descent
( Saddle Point Method )

 à
c

d t gHtL ez f HtL = â
s

gHtsL ez f H ts L ei Τs
2 Π

z f ' ' HtsL
where z >> 1 , 
gHtL »const near the saddle points ts,

 ez f HtL = 0 at the end points of c.
& 2 Τs = ± Π - Arg f ' ' HtsL - Arg z

with the sign chosen to conform with the original contour.
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� Proof

Consider a  saddle points ts of f  

ie.  f ' HtsL = 0.

Let f HtL = f HtsL +
1

2
f ' ' HtsL Ht - tsL2 + …

f ' ' HtsL = f ' ' HtsL ei Φ

t - ts = T ei Τ

z = z ei Ζ

Keeping only terms up to the 2nd order in T :

z f HtL = z f HtsL +
1

2
z f ' ' HtsL ei H Ζ+ Φ +2 Τ L T2

         = z f HtsL +
1

2
z f ' ' HtsL T2 8 cos H Ζ + Φ + 2 Τ L + i sin H Ζ + Φ + 2 Τ L <

Now, c or Τ is chosen such that along c,
1.  Re 8 z @ f HtL - f HtsLD < is a maximum

2.  Im 8 z @ f HtL - f HtsLD < = const near ts.

This can be accomplished by setting
Ζ + Φ + 2 Τ = ± Π

so that  z 8 f HtL - f HtsL< = Re 8 z @ f HtL - f HtsLD < 
             = -

1

2
z f ' ' HtsL T2    

             < 0
on c near ts: d t = ei Τ d T ( Τ = const )
Thus, near ts, the contibution to IHzL is:

IsHzL = ez f HtsL ei Τ à
cs

d T e
-

1

2
z f '' HtsL T2

where cs is the portion ( Τ = const ) of the deformed c which goes through ts.

Since z >> 1, we can replace à
cs

d T  by 2 à
0

¥

d T .

� à
cs

d T e
-

1

2
z f '' Ht0L T2

>

2 Π

z f ' ' HtsL

 IsHzL = ez f HtsL ei Τ
2 Π

z f ' ' HtsL
where 2 Τ = ± Π - Φ - Ζ

     = ± Π - Arg f ' ' HtsL - Arg z

with the sign chosen to conform with the original contour.

Away from the saddle points, Im 8 z @ f HtL - f HtsLD < varies rapidly so that contributions from different parts of the contour

cancels each other. It is therefore a good approximation to write:

IHzL = â
s

IsHzL

       = â
s

ez f H ts L ei Τs
2 Π

z f ' ' HtsL
where        2 Τs = ± Π - Φs - Ζ

Note: 
Substituting Τ into the last expression gives

IHzL = ± ez f HtsL - 2 Π

z f ' ' HtsL
which looks simpler owing to the absence of Τ. This is deceptive since the determination of the overall sign always requires
the calculation of Τ.
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Note: 
Substituting Τ into the last expression gives

IHzL = ± ez f HtsL - 2 Π

z f ' ' HtsL
which looks simpler owing to the absence of Τ. This is deceptive since the determination of the overall sign always requires
the calculation of Τ.

It's easy to see that

à
c

d t g HtL ez f HtL = â
s

g HtsL ez f H ts L ei Τs
2 Π

z f ' ' HtsL
provided g > const  near each saddle point.

More precisely, we require  D g << D ez f   near each ts.

This is satisfied for any rational function g.

Further improvement on the approximation can be achieved by keeping higher order terms in the Taylor series of f . The

mathematics are more involved. Interested readers can consult:
H.Jeffreys, B.Jeffreys, "Methods of Mathematical Physics", 3rd ed., Chap 17, (56)
P.M.Morse, H.Feshbach, "Method of Theoretical Physics", sec 4.6 (78)

� Example HΝ
H1LHsL

HΝ
H1LHsL =

1

Π i
à

c
d z

e
s

2
Jz-

1

z
N

zΝ+1
( s real & >> 1 )

where c goes from z = 0 with initial zero slope via the upper plane to z = H-¥, 0L asymptotically along the negative x-axis. (
See Arfken, 3rd ed.,  eg 7.4.1. )

Let f HzL =
1

2
z -

1

z
gHzL =

1

Π i zΝ+1

� f ' =
1

2
1 +

1

z2

The saddle point in the upper plane is  z0 = i. 

� f Hz0L = i gHz0L = -
1

Π iΝ

f ' ' = -
1

z3
f ' ' Hz0L = - i = ei

3 Π

2

� Φ =
3 Π

2
Τ = ±

Π

2
-

3 Π

4
= -

Π

4
or -

5 Π

4

To conform with the original c, we must have Τ = -
5 Π

4

� HΝ
H1LHsL = -

1

Π iΝ
ei s e-

5 Π

4

2 Π

s

= ei s - i
Π

2
JΝ+

1

2
N 2

Π s

� Example G(z)
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�

Example G(z)

GHz + 1L = z != à
0

¥

d x xz e-x ( z >> 1 )

The original contour is along the positive real axis.
To put the integral into a form to which the saddle point method is applicable, let

x = z t
� d x = z d t xz = zz tz t Î @ 0, ¥ L

z != zz+1 à
0

¥

d t tz e- z t

    = zz+1 à
0

¥

d t ezH ln t - t L

Let f HtL = ln t - t

� f ' =
1

t
- 1

\ saddle point at  t0 = 1   
f H1L = -1   

f '' = -
1

t2
� f ' ' H1L = -1 = ei Π ( Φ = Π )

z = z ei Ζ

2 Τ = ± Π - Π - Ζ = -Ζ  or  -2 Π - Ζ

Τ = -
Ζ

2
  or  -Π -

Ζ

2

We must use Τ = -
Ζ

2
 to conform with the original contour. ( This is obvious for the case of z real, ie. Ζ = 0).

z != zz+1 e-z e-i
Ζ

2

2 Π

z

    = zz+1 e-z
2 Π

z

    = zz+
1

2 e-z 2 Π

FurtherApplications_2.nb  7


