Integral Representations

■ Heaviside Step Function

$$\theta(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$$
$$= \frac{1}{2\pi i} \oint_{C} dk \frac{e^{-ikx}}{k}$$

Let C_x be the contour which

- 1. goes along the real axis from $k = (-\infty, 0)$ to $(-\rho, 0)$, then
- 2. goes along the upper half circle center at k = 0 from $z = (-\rho, 0)$ to $(\rho, 0)$, then
- 3. goes along the real axis from $k = (\rho, 0)$ to $(\infty, 0)$

For x > 0, C is the contour C_x closed by an infinite half circle in the **lower** k plane.

For x < 0, C is the contour C_x closed by an infinite half circle in the **upper** k plane.

Generating Functions

A family of functions $f_n(x)$ can be defined as the coefficients of a power series expansion of a generating function g(t, x).

$$g(t, x) = \sum_{n} f_n(x) t^n$$

The advantages of doing this is that relations between the member functions can now be investigated systematically. These include:

• Series expansion of f_n .

Direct expansion of g as a power series & then collect terms proportional to a given power of t often provide an easy way to find the power series of f_n .

• Recurrence Relations among f_n .

Differentiating the defining eq wrt either t or x & then collect terms proportional to a given power of t gives recurrence relations among f_n .

■ Integral Representation of f_n.

Treating the defining eq as a Laurent series:

$$f_n(x) = \frac{1}{2\pi i} \oint_C dt \, \frac{g(t,x)}{t^{n+1}}$$

where c is any contour that encloses t = 0.

Given the integral representation of f_n , further manipulations of f_n is possible.

These include:

Asymptotic Expansions

Analytic Continuation

■ Bessel Function J_n

$$g(t, x) = e^{\frac{x}{2} \left(t - \frac{1}{t}\right)} = \sum_{n = -\infty}^{\infty} J_n(x) t^n$$

$$J_n(x) = \frac{1}{2\pi i} \oint_C dt \frac{e^{\frac{x}{2} \left(t - \frac{1}{t}\right)}}{t^{n+1}} \qquad c = \text{unit circle.}$$

■ Modified Bessel Function I_n

$$g(t, x) = e^{\frac{x}{2} \left(t + \frac{1}{t}\right)} = \sum_{n = -\infty}^{\infty} I_n(x) t^n$$

$$I_n(x) = \frac{1}{2\pi i} \oint_C dt \frac{e^{\frac{x}{2} \left(t + \frac{1}{t}\right)}}{t^{n+1}} \qquad c = \text{unit circle.}$$

■ Legendre Functions P_n

$$g(t, x) = \frac{1}{\sqrt{1 - 2tx + t^2}} = \sum_{n = -\infty}^{\infty} P_n(x) t^n$$

$$P_n(x) = \frac{1}{2\pi i} \oint_C dt \frac{1}{\sqrt{1 - 2tx + t^2}} \cdot \frac{1}{t^{n+1}}$$
 $c = \text{unit circle}$

■ Hermite Functions H_n

$$g(t, x) = e^{-t^2 + 2tx} = \sum_{n = -\infty}^{\infty} \frac{H_n(x)}{n!} t^n$$

$$H_n(x) = \frac{n!}{2\pi i} \oint_C dt \frac{e^{-t^2 + 2tx}}{t^{n+1}} \qquad c = \text{unit circle.}$$

■ Laguerre Functions L_n

$$g(t, x) = \frac{e^{-\frac{xt}{1-t}}}{1-t} = \sum_{n=-\infty}^{\infty} L_n(x) t^n$$

$$L_n(x) = \frac{1}{2\pi i} \oint_C dt \frac{e^{-\frac{xt}{1-t}}}{1-t} \cdot \frac{1}{t^{n+1}} \qquad c = \text{unit circle.}$$

• Chebyshev Polynomials T_n

$$g(t, x) = \frac{1 - t^2}{1 - 2tx + t^2} = 2 \sum_{n = -\infty}^{\infty} T_n(x) t^n$$

$$T_n(x) = \frac{1}{4\pi i} \oint_C dt \frac{1 - t^2}{1 - 2tx + t^2} \cdot \frac{1}{t^{n+1}}$$
 $c = \text{unit circle.}$