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3.1. Introduction: How a Vector Field Mapsa
Manifold into | tself

As mentioned in 82.12, the (non-intersecting) integral curves of avector field

\7=i can fill up aregion U of amanifold M and form acongruence. In

particular, each point in U is passed by one and only one curve. Since each curveis
a 1-D manifold, the congruenceis (n—-1)-D manifold. Now, by increasing the
parameter A by AA, every pointin M will be mapped to apoint a"distance” AA
down the curveitison. Thisisal-1 map of M intoitself if V issufficiently well
behaved (aC' fieldwill do). If V is C*,themapisadiffeomorphism. If the
map existsfor all A4, therewill be a 1-D differentiable family of them, which form a
1-parameter Lie group. Such amapping is calle adragging along the congruence,
or aLiedragging.



3.2. Lie Dragging a Function
Liedragging afunction f on M aong the congruence of parameter A by AA

produces anew function f,, defined by

£ (Q)=f(P)

where Q is the point reached by dragging P.  If it happens that
f,(Q)=f(Q) forall Q

then f isinvariant undering the Lie dragging, i.e.,
fo,=f

If fisinvariant under draggingsof al AA,itiscaled Liedragged. Obvioudly, the
condition for thisisthat f is a constant along each curve in the congruence, i.e.,
df

—=0.
dA



3.3. Lie Dragging a Vector Field

The Lie dragging of avector field di along the congruence of ;—/1 by an amount
)7

AA produces anew vector field r d* . Geometrically, thisis accomplished by
Has

dragging each point on every integral curve C(x) aongtheintegral curve C(1)

that passesthrough it by anamount AA. The dragged pointsthen form anew curve

C(u,). [seeFig.3.2]

If it happens that d* :i everywhere, then d issaid to be invariant under
My, dp du

theLiedragging. Ifitisinvariant for al AA,then di issaid to be Lie dragged
y7;

by d% Geometrically, this means theintegral curves C(x) and C(4) forma

coordinate grid so that [see §2.14]

d d

One can also treat a Lie dragged congruence as generated from asingle curve C, ( u).
Thus, each curve C( ,u) in the congruence is obtained by dragging every point on
C,(u) dong the congruence of ;7 by afixed amount. Therefore, 1 is constant

oneach C(u). Hence(3.1).



3.4. Lie Derivatives
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3.4.0. Preliminary

In defining a derivation of tensors, one must first devise a meaningful way for
comparing tensors at different points of the manifold and hence belonging to different
tensor spaces.  Thisis accomplished by mapping (moving) one tensor to the tensor
space at the other point. Thereafter, standard methods of analysis can be applied
since oneis dealing only with tensors in the same space.

One way to "move" avector to another tangent space isto map it to its parallel image
there. In Riemannian geometry, thisinvolves a definition of parallelism and is
accomplished by introducing an affine connection into the manifold. The resultant
derivation is called covariant derivatives. [see chapter 6].

Another way for moving tensors that does not involve introducing additional
structures to the manifold isby Liedragging. Thisgivesriseto the Lie derivatives.



3.4.1. Lie Derivatives of Scalar Functions

TheLiederivative £;f of afunctionfon M at the point P(4o) on an integral curve

of \7:i is defined as
dA

wherethefunction f,, isflLiedraggedalong V byAM,i.e,

fo(A)="f(1+A1) v

on any integral curveof V. [see83.2] Thus,

(A4, +AL)- T (4 df
f], = et 32

=V (1)

o

(3.3)

Caution: V(f) merely means operating on f by the differential operator V = a

so that V(f):%(f):%. On the other hand,

Cda ox axﬂ(~xv)

dA T da oxt L oax

_dx* of e _ax* of _ df
di ox" * di ox* dA

denotes the contraction or inner product between avector and a 1-form. In
particular,

o (of - of of of of 0 /3
dx" |=(g,,—&" ) = e &) = o = dx”
Ox* (6XV ] < #oox” > 6xv< “ > ox" *  ox" ax”( )

V(&f):i(df) dx* o (Gf axvj dx* of o




3.4.2. Lie Derivatives of Vector Fields

TheLiederivative £,U of avector field L7=di along \7:;7 is defined as

y7i
Y
501, = fim == (359
so that for an arbitrary function f on M, we have
T _ U;A(f)_U(f)
(4011, g;mo[ v (39)
P
Here, UZl:d — isthe vector field generated by Lie dragging U‘% ., dong V,
Haa "
i.e., the vector field U,, hasvaue
- - d d
=U : =— (3.4a)
Ny} Zo+A2 du,, e du e
andisLiedragged by V so that [see §3.3]
- - d d
U, .,V (=0 —,— =0 3.4
(U, V] {% dJ (34)
Now,
. df
U, (f) =—
M( )LO d/uAl%
= df* —Aﬂ,i[ df* j +0(A4%) [Taylor series]
d/uA/l Jo+AA d/l d/uA/l A
) —ard (1] +0(A4?%) [ (3.4) used |
dluA/‘{ Jo+AL dluAl dﬂ” o
_d d* (ﬂj +0(A2?%) [(3.4a) used]
d,u%+M du,, \ da o
_dr +Mi(ij ~ar-g (ij +0(A4?)  [Taylor]
d,u% dAldu . du,, \ d4 N




_d +Mi(iJ ~ad (de +0(A4%)
d,uﬂo dildu X du\d o
where we've used d* :i+O(A2) to get the last equality. Eq(3.5) thus
du,, du
becomes
dfdf ) d[df d d
[£0](1) ~anlez) laraa)
Tda d,u du\da di du
Sincethis appliesto al f, we have
U = V,U 3.6
(0| v 0] )

Note that

LV =[0 ,V]=-£U 3.7)



3.4.3. Properties

The proof for the following properties of the Lie derivative are |eft as an exercise.

L[4 Gy )= Ly (38)
2. Lo+lg=Log
3. Jacobi identity:
(65 ] L ]+ [ Lo L )1 ]+ [ G 5] £ ] =0 (39)
4. Lebnizrule:
L,(fU)=(Lf)0+fLU (3.10)

5. For coordinates {x‘ } ,

—\i -0 ) 0 )
U)=v'—U'-Uu'—V' 2.7
(KV ) ox’ ox’ 27)

sothatif V =-2 then
ox'

—i ou’
(va) =7 (3.12)

6. For an arbitrary basis {€'},

(£0) =Vig (U')-U'g (V') +VIU*(£,8) (312)



3.5. Lie Derivative of a One-Form

Since @(U) isafunction, the Leibniz rule
L[ #(0)]=(50)0 +a(50) (3.13)
serves as the definition of the Lie derivative L @ of the 1-form & aong vector V.

Thus, L@ isal-form. Given coordinates {x |, eq(3.13) becomes

i 0 Ne (/.5 Ui 0 yi_yi 9 yi
Y g(wju )= (L) V' +o (v U U
=
) - Ow. j j _ j
(£,8) U =V Z2u i +vio 2 v &y &
j oX Yo Y o oox
O j
vy ey
OX OX
0
LAY
X ox’
Since this holds for arbitrary U', we have
ow, oV~
~ _ k ]
([Va))j =V AT (3.14)
which should be compared with
— ou! oV
U) =vK—-U* 2.7
(60) =V U s 27

To summarize, the Lie derivative of avector (1-form) isavector (1-form). Sincea

N
general tensor of type (M j can be written as alinear combination of the direct

products of N vectors and M 1-forms, the Lie derivative preserves the type of the
tensor it operates on.

For arbitrary tensors A, B, and T, the Leibniz rule becomes

L;(A®B)=(L,A)®B+A®(L,B) (3.15)

so that (3.13) generalizesto



(3.16)



3.6. Submanifolds

Loosely speaking, a submanifold is a subset of a manifold that isitself amanifold.
Sometimesit is called ahypersurface.  Indeed, many non-equivalent definitions
existsin the literature so that care must be exercised in using the term.

Here, we define an m-D submanifold Sof an n-D manifold M as a smooth subset of
M such that for every region U c Sc M, it is possible to find a coordinate patch in M

such that the coordinates of every point in U has the form (xl,---,xm,al,---,a“‘m),

where a' are constants that may for convenience set to 0.

Solutionsto differential equations that are in the form
{yl = yi (Xl’...’xm) , | :L..., p}
can be thought of as m-D submanifolds with coordinates (x',---,x™) in an (m+p)-D

1

manifold with coordinates {X',---,X", y;,+,Y,}. [seechapter 4]

Obvioudly, acurvein Sthrough apoint Pisasoacurvein M. Every vector in the
tangent space V, of Sistherefore also avector in the tangent space T, of M.
Hence, V, isam-D subspaceof T,. Notethat avectorin T, hasno unique
projectionon V.

The situation for 1-forms at P isjust thereverse. Thus, any 1-form in cotangent

space T, of Misal-formin V, of Ssothat T, isasubspaceof V.. A 1-form

in V, hasno unique projectionon T, .



3.7. Frobenius' Theorem (Vector Field Version)

In any coordinate patch of a submanifold Swith coordinates {ya ,a=1--, m} , there

are basis vectors {%} for vector fields on Swith

[ia , ib} -0 (3.17)
oy" oy

It isleft as an exercise to show that
a If V and W arelinear combinations of m commuting vector fields

{U(J.) ,j :L---,m} using functions as coefficients, then [V,W] isalinear

combination of {U(j)}. The set {U(j)} is said to be closed with respect to the

Lie bracket.

b) The same holdswhen {U( j)} have Lie brackets that are non-vanishing linear

combinations of {U( j)} .

It follows from (a) that the Lie bracket of any 2 vector fields on Sisalso tangent to S.
Conversaly, the Frobenius's theorem says that
If aset of m C” vector fields defined in aregion U of M is closed
with respect to the Lie bracket, the integral curves of the fields
mesh to form afamily of submanifolds.
The family of submanifoldsfill up U the same way as a congruence of
curvesdoes. Itiscaled afoliation of U and each manifold iscalled
aleaf of thefoliation. [seefigs3.6,7]

Thereis another version of Frobenius's theorem stated in terms of differential forms
[see 84.26]. It isthe fundamenta theorem for obtaining integrability conditions for
partia differential equations.



3.8. Proof of Frobenius' Theorem

3.8.1. Strateqy of Proof
3.8.2. Preliminary Relations
3.8.3. Proof




3.8.1. Strategy of Proof

Let M be amanifold of dimensionn. Let {\7(i);i=],---,m’} be a set of m' vector

fieldsdefined inaregionU < M .  Closure under the Lie bracket means:
[\7<i>’\7(j>}:zk‘,%k\7(k) Vi,j,ke(L...’m')

where the parenthesis around the indices are used to distinguish them from tensor

indices. If {v

(i)} spans asubspace of T,(U) of dimensionm<m’'<n, only mof

the vectors are linearly independent. Re-labeling them as {\Za);azl---,m},we

have

Vi Voo | = Zawly vabce(l - m)

For each vector V in T,(M), thereisacurvein M whosetangent at Pis V. For

each vector field V' on U, thereisan integral curve whose tangent at every point is
V. Any two independent vectors V and W will form a2-D subspace of Tp(M).
Likewise, two independent vector fields V' and W will form a 2-D subspace of
T(M). However, thereis no reason why the corresponding integral curvesaso liein
a 2-D subspace ( submanifold ) of M.  What the Frobenius theorem meansisthat if

{\7@} is closed under the Lie bracket, their corresponding integral curveswill lie

entirely in asubmanifold of M. Thisthen implies M is sub-divided into afamily of
such non-intersecting submanifolds, i.e., afoliation. If

[V(a) ,\7(bJ =0 Va,b

theset {V7,,

ra=1---, m} forms a coordinate basis for a submanifold Sof U. The
theorem isthen trivially proved. For the case

[\7(a) ,\7@} #0

we need only show that a set of commuting vector fields { X } can be constructed

(@)

by the linear combinations of {\7(a)} & the proof will be completed.



3.8.2. Preliminary Relations

3.8.2.a. Closure Theorem
3.8.2.h. Commutativity
3.8.2.c. Inner Product




3.8.2.a. Closure Theorem

The Lie bracket of linear combinations of a set of vectors that are closed under the Lie
bracket isstill closed. (cf. Ex 3.5, Schutz) To be more explicit, let

{U(i) i :L---,m} be closed under the Lie bracket, i.e.,
R
0,05 |=Ci0,
Let V and W be arbitrary linear combinations of {U(i)},i.e.,
V=au, and W =bU,
where a, b can be functions, then

[V.w]=cU,

Proof:

Since a, b are functions and the vectors are derivations, we have

e
[V.W]=aU U, -bU a0,

-a (U(i)bj )U(j) +ab'0,d,, -b’ (U(j)a‘ )U(i) ~b'ad,d,
)_bi( }Gm +ab’ [Ua) ’Jm}
)_ i( }U(J)

,+ab'Ciu
) bi( a“ +a‘bjCijk}U(k)

aJ

O

(Tyb')-b (T,2")
= {ai ( Jp! U )
(Tp*)=b' (T2



3.8.2.b. Commutativity

The Lie derivative commutes with the exterior derivative, i.e.,
£, (d1)-d(5,1)
Proof:

Given acoordinate basis {g}, we have

V' (z i)éi +V! a—fl.cféi

- 4 ox! ox! e
vl e L @
d(gf):d(vis—)z] :(%ﬁ%wi aiizafxijéj (b)
Now,
(58 =vk£5ii+5g§vk =‘2fo
| i
L‘Véj=%é'

so that (a) = (b), which completes the proof.



3.8.2.c. Inner Product

(df [V, W)=, (df ,W)-(d(£f),W)
Proof:
Leibniz'srule gives

£, (df W) =(L,df ,W)+(df , L,W)

=<d£vf ,vv>+<df ,[V,W]}
QED.



3.8.3. Proof

The proof is by induction.
Thecase m=1 isjust the congruence with each leaf an integral curve.
Next, we show that case m-1 istrueimplies case mistrue.

Out of the linearly independent fields {\7(a) ;a:],---,m} with

Vi Vi ] = 2l vabce(l:m)

we choose one and call it V,, :%. We then construct {)?(a) ; a:L---,m—l}
(m)

using linear combinations of {\7(a)} so that
(A2 X)) =0 Va=1--m-1

Thisis aways possible since dﬂ(m) isal-form of the entire n-D manifold M so that

it can be "orthogonal" up to n— 1 independent vector fields. Notethat n>m'>m.

The set of mfields {v X a:L---,m—l} is linearly independent with

(m)* “*(a)

coefficients that can be functions.  According to the closure theorem, this set is still
closed under the Lie bracket so that we can write

(R Koy = 2 PR 727,
Vi }=:Zjﬂabx )




_ dA _ _
where X =— and Lo 4 =—" _0 since V.. and X
() X(a)”(m) (m) (a

are independent.
du, du, ®

)
Similarly,
<a;t(m) ’[\7(m) ’ >z(ID)D - [V(m> <d/1(m) ’ )z(b)>_<c~I ([V(mf%(m))’ >z<b)>
=~(d(L, A - Xiy) =0

Using <&l(m) : )?(a)> =0, contraction of the closure conditions with c~l/‘t(m) becomes

Hence:
V=0 and v,=0
so that
— — m-1 —
[ Xy Xy |= ;ﬂabcxm

m-1

Nm) ' >z(bJ = ;”abx(m

Thus, {)?(a) ; a:L---,m—l} aloneis closed under the Lie bracket, which means they

form afoliation of the (m-1)-D submanifold. ( Remember that we assumed case
m-1 of the theorem to betrue) By definition, afoliation always has a coordinate

basis. Thus, alinear combination {\7@)} of {)?(a)} exists such that

¥ %] -0 vap-1:m-1
Now, if we can construct {Z(a);azL---,m—l} from {)?(a)} such that
Zw = 2 %X



Z ,Z.|=0 Vab=1--,m-1
12 2]

the proof will be completed. ( {V(m), Z(a)} will be the coordinate basis of the m-D

submanifold ).

Starting with |V _,Z _ |=0, we have
(m)*=(a)

m-1
0=[Viey - Z | =L Z) =L, 2. Ty
m-1 _ m-1
- <%maJX@+§k%%m&m
b-1 b=1
mlgg. m-1 L
=y —2X +>a , X
Sdi, & w[(@ w]
mlgg. ml ml
=2 5 Ky + 20w ) e X
1 (b) (c)
b=1 Y(m) b=1 c=1

Since X, areindependent, we have

m-1
daab + Zaaclucb =0
dAy o

which isaset of ordinary differential eqsfor «. ( uisfixed for given \7(m) and

{)?(a)}). Since asolution for « always exists for agiven set of initial conditions, the

condition [\7(m), _(a)] =0 canawaysbesatisfied. Theinitial conditions are chosen
such that {Z(a)} are coordinate basis of the (m-1)-D submanifold spanned by {)?(a)}
so that

[ Z 2y )=0

on the submanifold. Thisis accomplished by setting Z(a) = \7(a) . Outside the



submanifold, the condition
0=[Viey Zw) | = £, Zia

means that Z(a) isthe Lie dragging of \7(a) aong \7(m). Since [V@) ,\7@)}0 we

have [Z(a) : Z(b)] =0 because Lie dragging preserves the commutativity of Lie

brackets. QED.



3.9. An Example: The Generators of S?

Consider the (un-normalized) basis vector €, of the spherical coordinates (r,6,¢),

_ o 0 0 0
e¢=—yeX+X€y or — =—yY—+X—

op “ox oy

which we shall called 1, the angular momentum operator along z,

Defining 1. and I_y analogously, one can prove that [see any quantum mechanics

textbook],
[T, ]
[11]
[0

Thus, {I,,1,.1,} isclosed under the Lie bracket so that they form a submanifold of

(3.30)

z
y! X
z y

dimension d <3. Infact, d =2, which can be seen by considering the function

r=yxX°+y*+72

It can be shown that

dr (T,) = dr (T,) = dr (T,) =0 (3:31)

Since the contraction cb(\7) isthe number of planes of constant « that are pierced

by V', eq(3.31) meansthat {I,,1,,I,} aretangent to the 2-D surface r =const.

Therefore, d =2 and the submanifold isjust the 2-D sphere.

To complete the analogy with the angular momentum operator in quantum mechanics,
we define



L2 = LoLo+L-Lo+L Lo
S0 that

[ﬁW,LZ}:O for j=xY,2

:sineﬁ 20

Proof of theseisleft as exercise.

12§ 1 a(sinéafj 1 o°f

+—_
sin? 6 o4

(3.32)

(3.33)



3.10. Invariance

A tensor field T issaid to beinvariant under a vector field V if

LT=0 (3.34)

If T isan important characteristic of the system, sois V. For example, an axially
symmetric system isinvariant under rotations in some plane so that the angular
momentum generating them is conserved and characterizes the system.

Theorem

Let F= {T(l) T } be aset of tensor fields. Theset L of all vector fields under
which al fieldsin F areinvariant isaLie agebra.

Proof

First, we leave as an exercise to show that

LTy =LgTy=0 = Lg.uT)=0 (3.353)
where a and b are constants.  Secondly, using eq(3.8), we have

LT =LTy=0 = [4 L]Ty=LywTy=0 (3.35)

Thus,if V and W areinl,soare aV +bW and [V,W]. QED.

Comments

Note that L allows only linear combinations with constant coefficients. Thus, the

corresponding vector space treats each field V' asasingleelement.  In contrast, a
fibre bundle allows linear combinations with functions as coefficients so that each

fild V isacrosssection. Forexample, theset {I,,T,,1,} asconsidered vectors

y''z
in the fibre bundle with base R® islinearly dependent since they are all tangent to

the spherical surface S>.  However, to express each vector field I_l asthe linear

combination of the other 2, we must use functions as coefficients. Hence, inthe Lie

agebra, the set {I_ I, I_} is linearly independent and form a 3-D basis.

x1lyiz

Similarly, the dimension of the Lie algebra of all tangent vector fields to afinite
dimensiona manifold isinfinite.



3.11. Killing Vector Fields

A Killing vector field V isdefined by

L, g=0 (3.36)

where g isthemetric tensor. Given coordinates {x‘},we have [see eq(3.14)]

k a a k a Kk
([Vg)ij =V ﬁgij + O %V + 0y gv =0 (3.37)

If theintegral curvesof V are used asthe coordinate linesof x', eg(3.37) reduces
to [see eq(3.12)]

(L8), =59, =0 (338)

Thus, if aKilling vector is used as a basis vector, the metric will be independent of the
corresponding coordinate. Conversdly, if ametric isindependent of certain
coordinates, the corresponding basis vectors are Killing vectors.

Asan example, consider E* with Cartesian coordinates {X,y,z} sothat

g;=0;, for i,j=xy,z (3.39)

ij
. . . 0 0 0 -
Since these areindependent of {x,y, z}, the basisvectors {—,—,—¢ areKilling
OX oy o0z

vectors.  In spherical coordinates {r,8,¢}, we have

0

0
:—-—:1
S o
o 0
Opo = 20 00 r’ (3.40)
gW:i'i:rzsinze
¢ 0¢

Hence, only a%:l_z isaKilling vector. By symmetry, soare I, and I,. Indeed,

the 6 Killing vectors {x, Y, Z, IX,I_,E} form abasis for the Lie algebra (of Killing

vector fields). [Morein chapter 5]



3.12. Killing Vectors and Conserved Quantities in Particle
Dynamics

In classical mechanics, if aparticle is subject to an axially symmetric potential, the
component of its angular momentum about the axis of symmetry is a constant on the
particle'stragjectory. Similarly, if the potential isindependent of the Cartesian
coordinate x, the x-component of the linear momentum is conserved.

However, not every symmetry of the potential can lead to a conserved dynamical
quantity. For example, there is no conserved quantity associated with a potential that
is constant on afamily of ellipsoidal surfaces.

The reason for thisisthat, in order to induce a conserved dynamical quantity, the
symmetry of the potential must be with respect to displacements along some Killing
vector fields of the spacetime manifold. Proof of thiswill be deferred to §5.8.

In the meantime, consider the equation of motion in ordinary vector calculus
notations,

mv =-Vo or mv'=-V'o (3.41)
where V isthe "gradient” operator. However, as shown in 82.29, V isreally the
vector gradient so that in non-Cartesian coordinates, eq(3.41) should be written as

W' =—g' - (3.42)

ox’

Obvioudly, any conserved quantities of (3.42) must involve symmetriesin both g
and .



3.13. Axial Symmetry

3.13.0. TheProblem
3.13.1. Scdar Solutions
3.13.2. Vector Solutions




3.13.0. The Problem

Axial symmetry denotes invariance under arbitrary rotations about afixed axis. If
thereis an additional invariance under arbitrary tranglations along the axis, the
symmetry becomes cylindrical.

In problems such as particle dynamics, the symmetry isin the "background”. For
example, in the motion of a particle subject to a potential with axial symmetry, the
eguation of motion is of the form

L(y)=0 (3.43)

where  describes the state of the system. L issome linear operator with axial
symmetry, i.e., it isinvariant under transformation ¢ — ¢+ const, where gisthe

angle about the symmetry axis. In other words, L can only depend on partials such

n

as but not gitself. However, asolution yto (3.43) cannot be axially

symmetric since the particle can only be at one place at any given time.

Similar conclusions can also be drawn for the case of adding to an axialy symmetric
field a perturbation that has non-axisymmetric initial values.



3.13.1. Scalar Solutions

If wisascalar, one can introduce the Fourier series

v (4x)= 3 ya(x) €™ (344

mM=—wx

so that (3.43) becomes

o0

Ly)= X | L) €™ +v,L(€™)]

m=—c0

= i |:L(l//m) + e‘imme(é"‘V’)J em

=0 (@
Since L isalinear differential operator, we have
L(eim) =, (X )eimVj
where fr,, is some function independent of . Hence, (a) becomes

0= 3 [L(ym)+Wuf, €™ (b)

M=—o

Sincethetermsenclosed in|[ ] areindependent of ¢, eq(b) can only be satisfied if
L (W) + Vo = L (w) 17, €™L(E™) = 0 vm

Thus, we can define a ¢ -independent operator L, by
Lo (W) = L(y) + v, € ™L(€™) =0

so that

L(y)= Y €™L, () =0

m=-o

Another way towrite L y,, IS
Lo (y) = €™ €™L(y,) +v,L (€M) ]

- ‘i”‘V’L(z//me‘W) (3.45)

Note that the difference between L, and L is that the former is completely
independent of ¢ but the latter can depend on the partials of ¢. For example,
consider the Laplacian operator in ordinary vector calculus written in spherical
coordinates

, 10(,0 1 o(. 0 1 0
\Y% == r—"+ > —| 9N — +ﬁ—2
r<or or resnég oo 00) r°sn“6o¢

Obvioudly, itisinvariant under ¢ — ¢+const. Also,




vz[f (r,e)e‘”v’}v.[(w)émh fve““ﬂ
=(V2)eM™ +2(vf). ve™ 4 fvE™

=(v2)em 4 fve™

(v M Gy
_(Vf) frzsinZH

. 2
_ @ %ﬂ(ﬁﬂ}r 2; i(gngij_ zmz f (3.46)
r<or or r‘sné oo 00) rcan“¢@
Thus, L=V? and

10(,0 1 o (. 0 v
ey iew [l Ewl e srmetewnt [ LU ol e ey s
reor or resiné oo 060) resin“6

Thefunctions €™ are called scalar axial harmonics. A solution y of L(y)=0

issaid to have axial eigenvalue mif

: 0 -
L_w=im where € =—-=1I 3.47
€ l// lf// (4 a¢ z ( )
If wisascaar function,
oy .
Loy=—""=]
i Y my

so that wis simply proportional to the scalar axial harmonics.



3.13.2. Vector Solutions

Consider the submanifold Sdefined by ¢ =0 with the symmetry axis as a boundary.

Let {éj} be the basis for the tangent space V, of S It isthen supplemented so that

{68} isthebasis of thetangent space T, of the manifold M for pointsin S A

basisof T, for the entire M can be obtained by Lie dragging {é¢,éj} dong &,
once around the symmetry axis. [seeFig.3.8] By definition, the resulting basis
vectors satisfy

L.&=0 £.®8 =0 (3.48)

& g |

i.e., they are all axialy symmetric. Note that the Cartesian coordinate components
of these basis vectors are changed by the Lie dragging. This nicely illustrates the
fact that axial symmetry for avector field demands ¢ - independence of its
components only when ¢ is one of the coordinates.
The basis generated by (3.48) has axial eigenvalue m=0. Basisvectors
{é(m)¢ y- } with axial eigenvalue m can be obtained from {§(0)¢ 8, } ={e .5}
according to

e, =€™e  and g, =€™e (3.49)
so that using (3.48), we have

£ 8=, (678) (2, )

&

asdesired. Any vector field with axia eigenvalue m, i.e.,

EEV:imV
(4

can be expressed as alinear combination of {é(m) 5 Cm) j} with coefficients that are



functions independent of ¢.  In passing, we mention that the Lie draggings along €,

formaLiegroup called SO(2).



3.14. Abstract Lie Groups

3.14.1. LieGroups
3.14.2. LieAlgebra

3.14.3. One-Parameter Subgroups




3.14.1. Lie Groups
Ann-D Liegroupisann-D C” manifold G suchthat V g € G, the mappings

l,:G—>G by h—I (h)=gh [left trandation by g]

r,:G—>G by h>r (h)=hg [right translation by g]

are diffeomorphisms (C” 1-1 onto maps). These induce corresponding mappings
on the tangent spaces:

Lg:Th—>Tgh and Rg:Th—>Thg

Of particular interest is the mappings of h in the neighborhood the identity element e.



3.14.2. Lie Algebra

A vector field V' on Gisleft-invariant if Lymaps V atanyhto V atghforal g,
i.e,

L,:V(h)—V(gh) v h,g (@
Note that with the help of the group composition, eq(a) is guaranteed if
L,:V(e)»V(9) Vg (b)

Either L, or R, providesaway to compare vectors at different points. For

example, left- or right- invariancy is anatural criterion for a constant vector field V

inM. Now, each V (e)eT, definesaunique left- or right- invariant vector field.

The set of al left- or right- invariant vector fields thus forms a vector space of the
samedimensionas T,. [Asin §3.10, the coefficientsin the linear combinations of

these fields must be constants, not functions, on G.] Itiseasily proved that theLie
bracket of 2 |eft(right)- invariant fields is also aleft(right)- invariant field. Hence,
the set of all left- or right- invariant vector fieldsformsaliealgebra. By convention,
the algebra of the left- invariant fieldsis called the Lie algebra of G and denoted by

£(G). Le {V

(i),izL---,n} be a (left-invariant) basis vector fieldsfor £(G).

Closure under the Lie bracket means

(3.50)

The constants cl‘j‘ are called the structure constants. It can be shown that they are

1
the components atype (2} tensor C called the structuretensor. Thus, every Lie

algebra has a unique structuretensor C.  The converse of this however not true [see

§3.16]. If ¢ =0 forali,j, andk then £(G) iscaledabelian. Weshall see

that thisimplies the group G is also abelian.



3.14.3. One-Parameter Subgroups

Consider theintegral curve C(t) of aleft-invariant vector field V that passes

.= d and other points on C can be obtained

t=0

througheat t=0. Thus, V,=V

by the exponentiation exp(tV) [see§2.13]. Alternatively, this can be viewed as

the diffeomorphism of G itself generated by V' [see §3.1]. Notethat V isleft-

invariant so that it is determined entirely by V.. To emphasize this point, we write

C(t) =gy (t)=exp(tV)

e

(3.51)

e

Now, it is easily proved from the definition of exponentiation that
exp(tV) exp(t1\7)‘e = exp[ (t, + tl)\7]e
Hence,

g (L+t)= exp| (t,+ tz)\7]‘e =exp(tV) exp(t1\7)‘e

=g, (t,) gy (1) (352)

so that points on C form an abelian group called a one-parameter subgroup of G.
Note that each vector in T, generates a unique 1-parameter subgroup denoting a
C” curvein G that passesthrough e.  Thus, thereisa1-1 correspondence between
these 1-parameter subgroups and the elements of the Lie algebra.



3.15. Examples of Lie Groups

3151 R
3.15.2. GL(n,K)
3.15.3.

3.15.4.



3.15.1. R"

R" isamanifold and an abelian group under vector addition. Hence, itis alie
group. The 1-parameter subgroups are the 'rays' (straight lines starting from the
origin), which are also the left- invariant fields. The Lie algebrais abelian.



3.15.2. GL(n,K)

3.15.2.a. Group Manifold
3.15.2.b. 1-Parameter Subgroups
3.15.2.c. Component of the Identity
3.15.2.d. LieAlgebra




3.15.2.a. Group Manifold

Ther general linear group GL(n,K) in ndimensionsis the group of al invertible

nxn matriceswith elementsin K=Ror C. Group composition is matrix
multiplication with the unit matrix | asidentity e.  Using the matrix elements as

coordinates, we see that the set of all nxn matricesis K™ with GL(n,K) asa

submanifold that excludes all points corresponding to matrices of vanishing
determinants excluded.

Now, the tangent spacesof K™ areagain K™. Therefore, the tangent spaces T,
of GL(n,K) arealso submanifolds of K™ sothat all tangent vectors are also

nxn matrices. Infact, T, = K", i.e., it includes matrices with vanishing
determinants. For example, consider the curve through e given by

P(1)=diag(1+€",1---,1)

Thus, det|P(4)|=1+€" =0 forall Asothat thecurveisin GL(n,R). Itstangent

aeis
dp . dp
& —diag(10,---.0 - det| = |=0
a7, , - 29 (0--0) {dﬁ j

Since T, = K™, any matrix can generate a 1-parameter subgroup and hence belongs

tothe Liealgebra £[GL(n,K)].



3.15.2.b. 1-Parameter Subgroups

The 1-parameter subgroup generated by amatrix Aistheintegral curve g,(t) of the

left-invariant field V thatisequal to Aate. Setting t=0 at e, we have

% =A. Using(3.52), we can write
t=0

ga(t+At)=g,(t) ga(At)

S (t)[gA(At) —| ]

dg,(t) _ lim ga(t+At)—g,(t)

=lim
dt At—0 At At—0 At
Using g,(0)=1,wehave
d
gA(At):I+%OAt+---
o that
dg, (1) dg,
——~=0.(t) =2 =0,(t)A 3.53
™ gA( ) at |, gA( ) (3.53)
= ga(t)=e" =i%A” (3.54,5)
n=0 "'+

i.e., the 1-parameter subgroups of GL(n, K) are the exponentiations of arbitrary nxn

matrices, which are called infintesimal generator s of the subgroup.



3.15.2.c. Component of the Identity

Not every element of GL(n,R) isamember of a 1-parameter subgroup.

Thisis because a 1-parameter subgroup gA(t) IS a continuous curve that passes
through e=1 with det|l|=+1. Since det|g,| isacontinuous function of t while

det|g|=0 foral geGL(n,R),wehave det|g,|>0. Therefore, every invertible

real matrix with negative determinant is not on any 1-parameter subgroup. This

means GL(n,R) isadisconnected group. In general, elementsthat belong to a

1-parameter subgroups are called the component of the identity of the group.



3.15.2.d. Lie Algebra

Given atangent vector A at e anf its 1-parameter subgroup 2, (t), theleft-
tranglation f g, (t) of thiscurve by any matrix f € GL(n,K) producesa curve of
the congruence of the left- invariant vector field A generatedby A.. If fisonthe

curve gg (1), eq(2.12) gives

—|tIrE] 2{ )gB ( ) gg(t)gg (t)}
_ |Im 1 {exp(tAe)eXIO(tB )—exp(tB )exp(A)} [(3.55) used]
=lim=> {[I A+ [T +tB ][ 1 +tB+ [ T + 1A+ }}

= 'E%Ee - gez% (360)

which is simply the matrix commutator.



3.15.3. O(n)



3.15.4. SU(n)



3.16. Lie Algebras and Their Groups

3.16.1. Genera Definition of Lie Brackets
3.16.2. Coverings

3.16.3. SU(2

3.16.4. Exponentiations for SU(2)

3.16.5. Exponentiations for SO(3)

3.16.6. SU(2) Covers SO(3)

3.16.7. Topologies




3.16.1. General Definition of Lie Brackets

Every Liegroup G hasitsLiealgebra®. Now, every element g G istheimage

of e under the left- translation generated by g.  Also, every vector V, e T, generates

aunique vector field V' in®. Therefore, every gison one curve of each of the

left- invariant congruences. The question is whether it is possible to reconstruct G

given &.

To answer the question, we first generalize the definition of aLie bracket and hence

that of the Liealgebra.  Thus, the Lie bracket is defined as an internal binary

operator on avector space V on K,

VxV -V by (AB)—[AB]
suchthat forall A,BeV and a,bek,

1. [aAB]=a[AB] ad [AbB]=b[AB]. (bilinearity)
2. [AB]=-|B,A]. (antisymmetry)

A, E]] =0. (Jacobi identity)

For example, the cross product of vectorsin K defines a Lie bracket:

[5,5} =axb vabek® (3.70)

(3.68)

(3.69)



3.16.2. Coverings

We now state but not prove the following theorems:

1. Every Lieagebraisthe Lie algebraof one and only one simply- connected Lie
group.

2. Any Liegroup that is multiply- connected can be covered by the simply-
connected one belonging to the same Lie algebra  The coveringisthen a
homomorphism between these groups.

Note that

1. A manifoldissimply- connected if every closed curvein it can be smoothly
shrunk into a point.

2. A connected manifold M cover s another manifold N if thereis amap

7:M—>N
that is onto and such that for any neighborhood U of apoint Pe N,

7 V)-Us )

where 77'(U) istheinverseimageof Uand z ' denotestheinverse function

for theith 1-1 branch of .

For example, thereal line R covers the unit circle S' an infinite number of times by

the map

7:R—>S by x> 7z(x)=(cosx,sinx)

Thus, every interval [x,x+27z] inR ismapped onto S'



3.16.3. SU(2)

Consider the set H of matrices of theform

a b
(_b* a*j (372

We |eave as exercise the proofs of the following:

00
1. Theset H_{(O OJ} isagroup under matrix multiplication. It iscalled the

GL(2,C).
2. Hisa4-D red vector space under matrix addition. Onebasisis
0 i 0 - i O 10
lel ' 32:1 33:1 . | =
2(i 0 21 O 2(0 i 01
3. Writing AeH as
A=20,J,+ 22,3, +2a,), + a,]

where {a;} arereal. Wehave AeSU(2) iff

24: a =1 (3.73)

j
j=1

4. Thereisal-1 onto mapping from SU(2) to the spherical surface S°.

Since S° issimply- connected, sois SU(2).



3.16.4. Exponentiations for SU(2)

Elements of SU(2) can be obtained by the exponentiation of the elements of L[SU(2)].

For example, using
. O 1 . N\2 1 O . \2
R O RO
21 0 2)0 1 2
- \3 0 1 - \2
530 )
2){1 0 2

so that
.\ 2n
n+ n |
I =(37) 9, =(§j J,

.\ 2n
=) =(5) 1 n=0L-

- 2 (3.74)



3.16.5. Exponentiations for SO(3)

For the L; generator of SO(3), we have

00 O 00O
L=/0 0 -1 Lf:— 01 0 =-I,
01 0 0 01
=
00 O
B (B L=()'L =()']0 0 1
01 0
Lin (Li)n:(_)nll
so that

=l +Lsins+1,coss

1 O 0
=|0 coss -sins

0 sins coss

(3.75)



3.16.6. SU(2) Covers SO(3)
The exponentiations given by (3.74-5) suggests a mapping
7:9U(2) - 0(3)

by
exp(tJ,) — exp(tL,)
. 1 0 0
i.e, 2t t2 | 0 cost -—sint (3.76)
ish— cos— i
5 5 0 snt cost

Now, the distinct elementsin exp(tLl) are represented by any interval
te[a,a+2z] of length2zandthosein exp(tJ,) by te[a,a+4x] of length 4.

Thus, exp(tJ;) doubly covers exp(tL,). Similar conclusions can be drawn for

the other generators so that the map
7:9U(2) > 0(3)
by
3 3
exp(thJjo exp[thij (3.77)
j=1 j=1

isadouble covering of SO(3) by SU(2).



3.16.7. Topologies

As mentioned in 83.16.3, the manifold SU(2) is diffeomorphic to the ssimply
connected S° and hence share the same global topology. A one-parameter subgroup

exp(tJ,) of SU(2) beginsat ewith t=0 andreturnstoitat t=4r, thustracing

out agreat circleon S, Thepointslabelledtand t+ 27 arediametrically opposite
to each other.  Since they are mapped to the same point in SO(3), we see that SO(3)
isahemisphereof S*.  The manifold SO(3) is not simply connected because the great
circle forming its boundary cannot be shrunk since points on it must be pairwise
diametrically opposite. Note that locally, U(2) and SO(3) areidentical so that they
have the same Lie algebra.

The Lie algebra using the cross product as Lie bracket [see (3.70)] can be associated
with either group SU(2) or SO(3). In classical mechanics, cross productsin R® are

usually associated with SO(3) so that elements of the subgroup exp(6L; )

correspond to rotations about the X axis. However, this identification of rotations

with vectorsworksonly in R®. For example, vectorsin R* are 4-D but the
rotation group SO(4) is 6-D so that no such identification is possible.  In quantum

mechanics, associating SU(2) with R*® allows the assignment of the spin to a vector
in R® even though the spin is not an element of the tangent space of R*.

Finally, we mention that the algebra of an abelian group must be abelian.



3.17. Realizations and Representations

3.17.1. Déefinitions
3.17.2. Examplel
3.17.3. Example?2
3.17.4. Example3



3.17.1. Definitions

Mathematically, agroup, say SO(3), isan abstract group defined entirely by its
group operation and manifold topology. However, in applications in physics, the
importance of agroup isits action on physical quantities. For example, elements of
SO(3) are associated with rotations of objectsin 3-D space.  Such an association is

called aredlization. Let T(M) bethe set of operatorson somespaceM . A
realization of agroup G isamap

T:G>T(M) by g—T(9)
such that the group properties are preserved, i.e.,

1. T(e)=1 wherel istheidentity transformation on M.

2 T(g")-[T(e)]"

3. T(9)oT(h)=T(gh) where o isthecompositionin T(M).

A redlization isfaithful if Tis1-1,i.e,

gzh = T(g)=T(h)

If M isavector space and T(g) are linear transformations, the redlization is called a
representation.



3.17.2. Example 1
Consider the unit sphere S* in R® givenby x*+y*+2z°=1. Arotationby 6

about the x-axis mapsapoint (x,y,z) toanother (x,y’,Z) according to

X' =X
y' = ycosf —zsing (3.78)
Z =ysin@+ zcosd

so that

X!Z + yr2 + ZIZ :1

This transformation can be associated with an e ement in the subgroup exp(HLl) of

SO(3). If wetreat it asatransformation of S* into itself, we have arealization of
SO(3) since S* isnot avector space.  On the other hand, if we treat it as
transformationsin R*, which is avector space, we have a representation of SO(3).

The fact that, originally, we have used rotationsin R*® to define SO(3) illustrates a
useful technique. Thus, agroup isfirst defined by afaithful realization or
representation so that its properties can be studied in concrete terms.  Afterwards, the
group isregarded as abstract to allow for other useful realizations and representations.



3.17.3. Example 2

Every group G has at least 2 faithful realizations. the left and right transl ations of
itself. Theleft trandations give rise to the progressive (principal) realization and
the right trandations to the retrograde realization.



3.17.4. Example 3

Each Lie group G has arepresentation using its elements as linear transformations on
itsown Liealgebra. Thisis called the adjoint representation and is defined as
follows. First, we define the adjoint realization of the group G by the mappings

l,:G—>G by hi— 1, (h)=ghg™ v g,heG

which is not necessarily faithful. For example, if G isabelian, |4 isthe identity map
hi—»h forall g. Themappings |y areinner automorphismsof G. Note that

l (e) =geg ' =e forall g sothat every curve through e is mapped to another curve
through e.  Thus, I induces another map

Ad,:T, > T,
called the adjoint transformation of Teinduced by g. Given a 1-parameter
subgroup exp(t)? ) where X eT,_, itsimage under |4 is another 1-parameter
subgroup with composition

(ofg™*)(ghg™*)=gthg™
This defines the action of Adg as

I [exp(t)?)] = exp[tAdg ()?)] (3.79)

If g isaso amember of the 1-parameter subgroup g(s) = exp(s\?) ,itisleftasan

exercise to show that

Ad,, (X)=exp(sL;)X (3.80)



3.18. Spherical Symmetry, Spherical Harmonics and
Representations of the Rotation Group

3.18.1. Preliminary
3.18.2. Spherical Symmetry

3.183. SO(3) and SU(2)




3.18.1. Preliminary

The following is a collection of definitions that are used later.

1. Asequence {x,} of pointsonamanifold M isamapping
N—->M by n— X

2. Asequence {x,} convergesto xeM if

VN(x), 3n,eN suchthat x,eN(x) Vnxn,

where N(X) is a neighborhood of x.
3. A Cauchy sequenceis a sequence such that

VN(0), 3n,eN suchthat x,-x,eN(0) Vnmxn,

4. Atopological vector spaceisamanifold which is also avector space.
5. Atopological vector space is completeif every Cauchy sequencein it converges
to some pointinit.

6. LetVbealinear spaceon K =R or C. A mapping

VxV—>C by (xy)—>(x|y)

isasesquilinear mappingif foral x,y,zeV and a,beC,
(x|y)=(y]%)
(ax+by|z)=a (x|2)+b (y|2)

7. A sesquilinear mapping is positiveif (x|x)>0 V x.
8. A sesguilinear mapping is strictly positiveif it is positive with
(x|x)=0 iff x=0.
9. A seminorm isamapping
V>R by x|
suchthat forall x,yeV and a,bekK, wehave,

I+ y| <X+ ¥ (triangular inequality)

o] =af[x]



10.
11.

12.

13.

14.

If furthermore,

Il
o

Ix[=0 it x

itisanorm.

A complete normed vector spaceis called a Banach space.

A linear space with a strictly positive sesquilinear mapping iscalled a
pre-Hilbert space & the mapping the inner product.

Theinner product inducesanorm x| =/(x|x).
A complete pre-Hilbert spaceis called aHilbert space.

The space of all functionsf on M suchthat |f|” isintegrableiscalled L"(M).



3.18.2. Spherical Symmetry
A manifold M is spherically symmetric if the Lie algebra of its Killing vector fields

has asubalgebra s0(3)=£[SO(3)]. Consider the Hilbert space H(S’) on S* which

isthe linear ( function ) space L%(S?) of al square- integrable complex functions on &
A vector in L%(S) isafunction f with norm

I1l= [Jo 7001 (4

where f(x) is the component of the vector f in the basis consists of eigenfunctions of

the position operator. Note that L%(S") is a vector space of infinite dimensions.

Theredlization of ge SO(3) asamapping

R(g):$ > & by x> X' =R(g)X
induces a mapping
R(9):*(S*) > L*(S?) by firsf'=R(g)f

With suitable definitions, R(g) can be made to be arepresentation of SO(3) on

L%S). SinceL*(S) isinfinite dimensiona, sois R(g).

There are a'so finite dimensional subspaces of LX) that areinvariant under R ( g)

vV g. They form representations of finite dimensions.  Invariant subspaces that
contain no smaller invariant subspaces give irreducible representations (IRs).

Let {f;i=1---,N} beabasisfor suchaninvariant subspace V  L*(S’), then

f=af vV feV

R(g)f:R(g)[aifi] =aR(g)f =f" =bf
which implies

R(g) fi= fjgij



such that

afg =bf=bf N bl = glal

The matrix mj:gij is called the representation of gin V.

The basis functions of finite dimensional IRs for SO(3) are the spherical harmonicsy, ..
( see Tung for the actual construction).
Thus, each invariant subspaces V; of L) is characterized by aninteger | >0 and

hasdimension 2+1. Theset Y, ={Y, ;m=-l,--1} isabasisof Vi. The
spherical harmonics are complete in the sense that
Y=CJYI ={Yni1=01-;m=—l,-- I}
=0
isabasis for L2(§).

Since R(g)=exp(tT) and R(g)=exp(t',), Viisinvariant under R(g) iffitis
invariant under {7, ;i =x,y,z}. Thisisguaranteedif the basis Y; isinvariant under
the generators {7, ;i=x,y,2},i.e,

Y =LY chYlk Vi=xy,z and m=—l,--,l

For example, if 1 =0,

Y, ={Y =1}
6 (Ye) =LYy =4,(1)=0=0-Y,, Vi=xy,z
For 1=1,

Y, = {0 Yo Yoo} :{,/isine e‘¢,,/icose,,/isin9 e“”}
8r 4r 8r
/3 . / 3 / 3 .
_{ g(x-i-ly), EZ’ g(X-')/)}



L (Yi) = [X%— y%]{\/g(xﬂy)}
:\/g(iix— y) =ii\/g(xiiy) =i VY,

| =1 isthe smallest faithful representation of SO(3). Itisusualy called the
fundamental representation. Obvioudly, it is equivalent to the defining 3x3 specia
orthogonal matrix representation. ( see Ex 3.26, Schultz )



3.18.3. SO(3) and SU(2)

Since 7:8U(2) - SO(3) isa2-1mapping, i.e, thereare 2 elements u, u' € SU(2)

that maps into the same g € SO(3), therefore, any representation R(g) of g € SO(3)
defines a ( unfaithful ) representation Sfor SU(2) such that

S(u)=S(u)=R[z(u)]=R[z(u)]
Other representations, say T, of SU(2) such that
T(u)=T(u) even if z(u)=7z(u)

are called double valued representations of SO(3).

IRs of SU(2) are characterized by an index k which is either awhole or a haf integer.
If kisan integer, they are representations of SO(3) with the sameindex ( 1 =k ).
If kisahalf- integer, they're double- valued representations of SO(3).

The 2x2 special unitary matrices used to define SU(2) form arepresentation with

k:%. It is the smallest faithful representation & often called the spin %

representation.  Elements of the vector space are called spinors.
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