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4.1. Definition of Volume — the Geometrical Role of Differential
Forms

Any pair of infinitesimal vectorsin Euclidean space defines an infinitesimal area
egual to the area of the parallelogram that uses these vectors as sides.  Obviously, the
area bounded by 2 parallel vectorsiszero. Addition of areasis simply addition of
the corresponding vectors. [see Fig.4.3] Thus, we define the area as an
antisymmetric bilinear mapping

area:VxV > R by (x,y)area(x,y)
such that
area(a,b)=-area(b,a) so that area(a,a)=0

area(a,b)+area(a,c)=area(a,b+¢)

. : . (0 .
In other words, area( , ) is an antisymmetric (ZJ tensor. Intermsof Cartesian
components, we have

E— v v
area( ’W): WX Wy




4.2. Notation and Definitions for Antisymmetric Tensors
0 . . .

A (2} tensor @ issaidto beantisymmetricif
@(UV)=-a(V,0) for al vectors U,V (4.1)

0
Similarly, a (pj tensor, where p > 3, iscompletely antisymmetricif it changes

sign when any pair of its argumentsisinterchanged. Any tensor can be anti-
symmetrized as a signed sum of all permutations of its arguments. For example,

o,(0V)=2[a(0V)-a(7,0)] (4.2)
A0V W) = [ 6(UV W)+ (V. W0) + 5(W.0.V)
~o(V.UW)-a(WV,0)-a(UWV)] (4.3)

where the subscript A stands for antisymmetric part and the factors 2! and 3! are
added for normalization. In index notations, these become
1

(@), = z(‘“u‘ — O ) = Wy (4.4)
- 1
(pA)ijk = g( Bik T Pii T Paj = Pjik = P = Py ) = Brijg (4.5)

where we have used [l K -~k] to denote the normalized totally antisymmetric sum.

0
Hereafter, we shall use the overhead ~ to denote a totally antisymmetric ( p} tensor.

. _ 0
Note that in an n-D vector space, a completely antisymmetry ( J tensor has at most
Y

Cn o n! 46
P p!(n-p)! (46)

independent components.



4.3. Differential Forms

0
A p-form is defined as a completely antisymmetric tensor of type ( p) . Here pis

the degree of theform. Obvioudly, antisymmetry isirrelevant for p=0,1. Itis

left as exercise to show that the set of all formsof agivenpatpoint xe M isa

!
vector space Qf (M) of dimension Cg:ﬁ,wherenisthedimension of

the manifold.

To facilitate the building up of p-forms of high degrees, we introduce the wedge, or
exterior, product A. To begin, we define

PAG=pP®G-4q®p (4.8)
if p and § arel-forms. Obviousy, pAq isa2-formwith pAp=0. Given

avector basis {g} anditsdual 1-form basis {&}, itis straightforward to show that
theset of C;' independent formsin {& A&’} isabasisfor 2-forms. In particular,

a= ) a;&re SEPA N (4.9)

1
:E(“ij -ay ) =-ay =y

are the components of the 2-form « .

In order to handle p-forms with p > 2, we demand the wedge product to be
associative, i.e.,

m(qm):(mq)m =pPAQAT (4.10)
where p,q,f areformsof arbitrary degrees. The set of al forms of arbitrary
degrees, together with an antisymmetric multiplication A, is called a Grassmann

algebra. Itsdimensionis » C;'=(1+1)" = 2", wherenisthe dimension of the
p=0



manifold.

Exercise 4.8

Show that

For p al-formand § aZ2-form, wehave

(b/\Q)ijk =Pkt P4 + BG; = 3p[iqjk]

(4.11)



4.4. Manipulating Differential Forms

44.1. Commutation
4.4.2. Contraction



4.4.1. Commutation
Consider ap-form p andag-form ¢. Givenal-form basis {é‘},wecan write

bz_pilmip CUNSN -1 and q:qlqI1 . PN

=(-)" plql P & i Il/\(é'l/\ /\éi“) (e“/\ /\epq)
=(-)” plq, B0, G, € ACA(B A NG A (& A nE)
:(_)p plql p..\G . pq(eipu/\,../\éimq)/\(éilA__./\éip)

=(-)"a~p (4.12)



4.4.2. Contraction

The contraction of ap-form & withal-vector & resultsina(p-1)-form. To
simplify the notations, we denote this by

a(&)=a(&,-) (4.139)
where ... denotes p-1 empty slots.  In terms of components, we have
[@(8)] = (4.13)

Note that in (4.13a), putting & in some other slot than the first can effect at most a
signchange. To seethis, consider the 2-form &= pA G, where p,§ are 1-forms:

(Prd)(E)=(p®a-a®p)(&) =p(£)a-d()p

Thus, eventhough & isnomindly at the 1% slot, the antisymmetry of the wedge
product ensures that it is contracted with both p and §. Thus, putting it in the 2™

dot only resultsin asign change. Obvioudly, the same aso appliesto any p-form
that can be written as a wedge product of p 1-forms. In particular,

(8 nne?)(E)=(¢ @& 0 08 - 0808 +|(E)

=§i1éi2®___®éip_§i2 éi1®...®éip+... [p' termS]

=plehg®.. @8

Since agenera p-form can be written as
~ 1 ~i ~i
a=—a,; et A---ne’

pt "
we have

i(8)=a, 80 08

Usng « . =a;. . -,Wecanwrite
I 1y ‘:I1~~~Ip:|




= (p-1)-form with components [d(g )} _ g

S igigeei
12
g p

Finally, we mention that if & isan arbitrary form, we have

(pra)(&)=p(E)ra+(-)" pra(E) (4.16)



4. 5. Restriction of Forms

0
Sinceap-form a isa ( j tensor, its domain is the product space ®°V =

Y
V®---®V , whereV isthe entire vector space. Therestriction d| of @ toa
p factors W

subspace W of V isthe same p-form & with domainrestrictedto ®°W . Hence,

a|, (X, ¥)=a(X,.¥) W K, ¥ eW

w

Notethat if dimW < p, then 07|W =0 sinceal p-forms vanish on avector space

with dimension lessthanp. If dimW = p, then 07|W has only one component.

Therestricting of aform isalso called sectioning.  This comes from treating W as a
(hyper) plane passing through, thus sectioning, the series of planes representing the

form. Aform ¢ issaidtobeannulled by Wif a|, =0.



4.6. Fields of Forms

A field of p-forms on amanifold M isarule (with appropriate differentiability
conditions) that gives ap-form at each point of M. The properties of p-forms
discussed so far with respect to a vector space V are applicabl e to the tangent space
T, foreach point Pin M. The only point needs mentioning is that, since a
submanifold Sof M picks out asubspace V, of T, forall points Pe S, wecan

definetherestriction of ap-formfield & to Sasthefield formed by restricting &
aPto V.



4.7. Handedness and Orientability

In an n-D manifold M, thespace QF (M)=A" T, ="T, A---A" T, of dl n-formsat
\_ﬂ——/

n factors

each pointinM is1-D. Consider now ann-formfield @. If {g§} isavector

basisat point P, then @(&,,&)=0 iff @=0 aP. Hence, & separatesthe set
of all vector basesat P into 2 classes: thosewith @(€,---,&,)>0 arecalled
right-handed and those with @(&,,---,&,) <0, left-handed. Thisclassificationis

actually independent of the exact valueof @ used. For, the 1-D natureof A"'T,

means that any non-zero n-form @' can bewrittenas @' = f®, wherefisa
non-zero number. Hence, any pair of bases that belong to the same classunder @
will remainsounder @'. A manifold M iscalled orientableif it ispossible to

define handedness continuously over it, i.e., there exists a continuous basis {g (P)}

with the same handedness everywhere on M.  Obviously, thisis equivaent to the
existence of an n-form field that is continuous and non-zero everywhere.  For
example, the Euclidean space is orientable but the Mobius band is not.



4.8. Volumes and Integration on Oriented Manifolds

4.8.1. Integration of a Function
4.8.2. Change of Variables

4.8.3. Orientability
4.8.4. Integration on Submanifold




4.8.1. Integration of a Function

In an n-D manifold, aset of n linearly independent infinitessimal vectors define an n-D
parall el epi ped whose volume, which is a number, can be obtained by the contraction
of these vectors with an n-form.

Let @ beann-formon anregion U of an n-D manifold M with coordinates

{x',--+,x"}.  Sincethe n-form spaceis 1-D, we can write
@=f dd A Adx”

where f = f(xl,---,x”) issome function on M. To integrate over U, we divide it

into cells spanned by n-tuples of infinitesimal vectors {Axlﬁl...,Ax” ;n } . The
X X

volume of one cell can be written as

Axl...A)(n =d~X1/\---/\(]X" Axlﬁl,"‘lAXn 0
OX ox"

so that the integration of f over thiscell is
I f (X x")d"x = FAX - AX

cell

=f dxlA---/\dx”(Axlil,---,Ax” o ]
OX ox"

@(Axlil,m,Ax“ d j
OX ox"

= @(cell) (4.17)

Adding up the contributions of all cells gives
jf d"x=> @(cell) chz; (4.18)
U U

cell

=.[f A AdX
U



4.8.2. Change of Variables

The integral j&) isindependent of coordinates up to an overall sign. For example,

on a 2-D manifold with coordinates (4, x) , eq(4.18) becomes
jf(/t,,u)d)tdyzj(?) :I f (/l,y)a/lf\d,u

Under a change of coordinates (4,x)— (x,y), we have

1=+ 2y

oX oy
~ o~ Ou =
du=—"—dx+-—-d
Yz X oy y
S0 that
dandu=|Pax+ ZLay | Al Haxs Hay
OX oy OX oy
_|0Aou 0idu dx A dy (4.19)
OX 0y 0Oy OX
_OAH) g ndy
a(x,y)
o 0z
where a(ﬂb’/“l)= ox oy =J isthe Jacobian of the transformation
o(xy) |ou on
ox oy

(4,4) > (x,¥). Now, intheordinary Riemann integral of afunction of multi-
variables, the same coordinate transformation is related by

dAd u = |J|dxdy (4.19a)
where the absolute value of Jisused. To reconcile this difference, we first point out

that if we write the transformation as (4, 1) — (Y, x) , (4.19) and (4.192) become

dindu= dyardx =-Jdyadx =Jdxady

dAdy =|J|dydx =|J|dxdy



Thus, the values of both expressions remain unchanged, as they must be, but for
different reasons. In particular, the infinitessmal area defined in terms of the exterior
product (4.19) has an orientation, which isignored in (4.19a) but handled eventually
in terms of the integration limits of the Riemann integral.



4.8.3. Orientability

Consider again the integral

[o=2 d(cedl) =[fdx

cell

where

d=f dxtA-AdX"

cell :(Axlﬁ,---,Ax” 5?("] =(Ax'g, -, AX" &)

If we switch to another basis (él',---,en') which differsfrom (g,---,&) onlyin
handedness, we have

cell':(Axl' g, AX" q')
and

@ (cell’) = f Xm/\-”/\an(AXl’ g, AX" q’) =—a(cell)

Assuming that the entire region of integration is orientable, i.e., it can be described
by aset of bases of the same handedness, we have

;:cb(cell):—ce'zl; @(cell’)

Therefore, in relating '[c?) to the Riemann integral '[f d"x, thereis an unavoidable

ambiguity insign. By convention, aright-handed basisis aways assumed in the
definition (4.18).



4.8.4. Integration on Submanifold

By definition, theform @ intheintegration Ic?) is aways of the maximum degree:

n-form on an n-D manifold M, or p-form over ap-D submanifold S.  In every case,

jcb existsonly if itsdomainis (internally) orientable. Therelation, if any,

between the orientabilities of M and Sistherefore of interest. Let M be orientable
and Papointof S A right-handed n-form @ at P can be reduced to a p-form by

contractingwith n— p linearly independent 'normal vectors {ﬁl,---,ﬁn_p} a P that

arenot tangentto S.  The resultant p-form c?)(r11,~--,nn_p) then represents aright-

handed restrictionof @ toS  Obvioudly, this restriction depends on the exact
choice of the normal vectors, including the order in which they are labelled. A given

choiceof {m,---,Mm, | iscalled an external orientation for Sat P. Sissaid to be

externally orientableif it is possible to define an external orientation continuously
over it.

If some open region of M containing Sis orientable, then either Sis both internally
and externaly orientable, or it isneither.  If no such region of M is orientable, S may
be one but not both. For example, consider aMobius strip as a 2-D submanifold of
R® (figure 4.5) and acurve in the strip as a 1-D submanifold of the strip (figure 4.6).
Set up aright-handed triad of vectors at any point P of the strip, two lying in the strip
and one out of it. Carry them continuously once around the strip, keeping the two
awaystangenttoit. The outward pointing one always returns pointing to the
opposite side: the Mobius band is not externally orientablein R®.  Similarly, set up
two vectorsin the strip, one tangent to the curve C; and the other not.  Transport
these continuously around and the outward pointing one returns pointing to the other
side of the curveinthe strip.  Since we know that the curveisinternally orientable
(thisis a property independent of any space it is embedded in) it cannot be externally
orientable in alarger nonorientable manifold. By contrast, the curve C, is both
internally and externally orientable in the strip because it does not 'feel’ the
nonorientability of the strip: it has a neighborhood in the strip which is orientable.



4.9. N-vectors, Duals, and the Symbol g;;

49.1. Dua Maps
49.2. Cross Products

49.3. Dual of Forms
49.4. Properties of Duals
495, Levi-Civita Symbols




4.9.1. Dual Maps

At each point P of an n-D manifold M, there are 4 vector spaces of the same
dimension, i.e., the spaces of p-forms, (n-p)-forms, p-vectors, and (n-p)-vectors.
There are various 1-1 mappings between them:

2]

p—vector «2> (n-p)- forms

ol Tg

p- forms «2> (n-p)-vectors

where g isthe metric tensor and @ thevolumen-form. The @ mapisalso caled

adual map. Thedual *T of ag-vector T with components T"* =Tl (g indices)
isdefined as

*T =a(T) (4.21)

In terms of components, we start with
1 " i

C?):Fa)lmj & A--ng (n indices)
1 Kool = —_ - -
T=aT G N AE (qindices)

—T“' 8 ®--®8 — k] g ®--®8
Thus,
- 1 ol A i (= _
a)(T)zma),“.ka '@ AnE (6 ®-®F)
Since the contraction involves only the 1% q products of 1-forms, we have

© _Tk..-l él®"®éj(é<®.®é):a)k | -Tkn.l ém®-®éj

Sincethereare C;' waysto pick q 1-forms out of n 1-forms without regard to order,

we have,
a(T) :%ana)kmlmmj-rkml E" A A B (m...j contain (n —q) indices)
1 T @™ A n @ (n-q)-form
= ql(n_q)! ke A e q
so that
- 1 _—
(T, =Lo(T)], =awk...|m...jT" ' (n-g free indices) (4.20)



4.9.2. Cross Products

Asan example, consider Euclidean space E® asour vector space. By definition,
the Cartesian components of a vector and its associated 1-form areequal. Consider

then 2 vectors U, V and their associated 1-forms U, V.. The2-form U AV
has C; =3 components, namely, UV,-UY,, UV,-UV,, and UV,-UV,.

By (4.20), it can be considered as the dual of avector W so that [Exercise 4.10]

W =U AV (4.22)
In fact, since the componentsof W are the same asthoseof U AV , we see that
W =U xV . Thus, the cross product existsonly in E®, where the dimensions of the
2-formsand 1-vectors arethe same.  Also, W isan “axial” vector since the volume
3-form & and hence* changessign, but U AV doesn’t, when the handedness of
the coordinate system is changed.



4.9.3. Dual of Forms

Anaogousto (4.20), we definethedual S=*B of ap-form B asthe (n-p)-vector
with components

Si...k =i'a)|.4.mi...k3mm (426)
p!
where @ istheinverse of thevolumen-form @, i.e,
e (4.24)

"o, =n! (4.23)



4.9.4. Properties of Duals

Taking afunction f as a 0-vector, itsdual isan n-form *f = f@. Thedua of *fis
the original O-vector:

* (% * ~ 1 -:m
(1)=*(18) =—0""(far.,)= T
i.e, **f=1f . Indeed, for any p-form B or p-vector T, we have

*xB=(-)""PB (4.273)

T =(-)""T (4.27b)

The proof of thisisasfollows. Let S bethe (n-p)-vector dual to the p-form B:
S=*B with Sk :%a)""m“""a,,,m

Thedual of Sis
(*s) =(;w....kj.... -

[(n-p) indicesini...kandpinj...I ]
n—p)!

3 1 rosiok
ol (n=p)! @y @ B s
_\P(n-p)
= ( ) 1ok el a)lmkrmSBr s
p!(n—p)!

where the sign factor arises from interchanging the p indicesr...s with the (n-p)

indicesi...kin o" " toget " *"°. Now, for agiven set of indicesi...k, only
r...sthat are permutations of j...I contributes. Furthermore, in permuting the indices

indices) since w and B change sign together.  Using @, ., @ *" =1 (no
summation), we see that for agiveni...k, we have

Oy @B = PIB,, ( summationinr...s)
Sincethereare (n-p)! permutationsini...k, we have

(*s),,=(-)""B,,

which proves (4.27a).



Combining the metric maps with the dual maps, we obtain maps between p- and
(n—p)- forms or vectors. These maps are also called * but caution must be exercised
when the metric isindefinite (asin relativity). [see Exercise5.13].



4.9.5. Levi-Civita Symbols

For an n-D space, the completely antisymmetric L evi-Civita symbols are defined as

+1 even permutation of 12---n
gr=€" =41 if j---k=1<odd permutationof 12---n (4.28)
0 otherwise

irregardless of the coordinate system used. For example, on a 3-D manifold, the

form dx* Adx* Adx® hascomponents &, inthe coordinate system (X', x*,x°).

In another coordinate system, its components become he;, , where h is some function.

Another example s that the volume n-form can be writtens as

Kk = fgij...k (429)

@ * = %5””"‘ (4.30)



4.10. Tensor Densities

Given a set of coordinates {x‘ = L---,n} , we can define avolume n-form by

1, - -
E=—¢g , O A A---AdX
n! "

n

Any n-form @ can bewritten as

O=twé = (OT :mgij“.k

where v iscalled ascalar density. Under a coordinate transformation to {x" } ,a
straightforward generalization of (4.19) gives

dEAdE A AdX" =T dXE A X A AdX"
where J is the Jacobian of the transformation.  Since the Levi-Civita symbols take on

the same values in every coordinate system, then-form @ inthe {x'}| system

becomes

O=w'& =w dX*AdXZ A AdX" n

:m’%dxlAasz---/\dx

S0 that
w=mwJ

In general, aquantity ¥ that transforms like a tensor but with an extrafactor J",i.e,
TEL = J" ARAD - ASAY T (4.31)
iscaled atensor density of weight n.  Thus, avolume n-form is a scalar density of

weight 1. [ Notethat Lawrie called T adensity of weight —n].



4.11. Generalized Kronecker Deltas

Consider avolumen-form @ = f& with components o, , = f¢, , anditsdua

~ : ; 1 .
*@ with components o' = Tg.,...k .

It is straightforward to show, by induction,
that

Im-r _ Im-r _ gl om r m gl r
@, @™ =& & =585 =S| O+

=nl g, 676 (4.33)
Defining the p-delta by
Sl =Pl 6] (4.34)

wherethesets (i---j) and (k---1) each contains p indices, we cane write (4.33) as

gl =0 (4.35)

! ij-k
Consider now the contraction of a (p+1)-delta:
St = (p+1)1 8} 5185,

Using [cf. (4.5)],

(p+2)![imr---s]= pl{i[mr---s]-mlir---s]—r[mi---s] - = s[mr---i]}

we have
St s = PG O 184 = 8, G188y =8, 51,01 -8y == 8L 5p0F -8 |
= p! {n T LI AR P NI AR _..._é‘[{ngrk...gs']}
= p!(n- )bt -+
=(n=p)ous (4.36)

which isap-deltain an n-D space.

Example

Consider the triple cross product W x (LT ><\7) in E®. In Cartesian coordinates, we



have U, =U' and

(OxV) =g,U V" (OxV) =&y,
so that

[VT/ x(U x\7)} =g WUV, =g,e"WIUV,

=(3-2)I6!W'UV,, =(38"-55" WUV,
=WV, -WUV, =(W-V)U,-(W-U)V

or, in the more familiar vector notations

wx(uxv)=(w-v)u—(w-u)v



4.12. Determinants and g&;. «
Consider a 2x2 matrix A:{A”}.

g A AT =g, APAZ 6, APAT = AUAZ - NPAT = det(A) (4.38)
It isleft as an exercise [see Exercise 4.12] to show that, for a nxn matrix A,

det(A) =g A A A (4.39)
1 ai pbj ck
:FgabmceijmkA A A (4.399)

Also [see Exercise 4.13], if {&'} isaset of orthonormal basis 1-formsand {x“} is

an arbitrary coordinate system, then the preferred volume n-form
D=EANE N nE"
can be written as

&=/|g] dx" AdX” A AdX” (4.40)

where g=det(g,;) with {g,; | beingthematrix tensor expressed inthe {x*|
coordinates.
Example

In E® with Cartesian coordinates, the volume of a parallelepiped of sides a,b andT
isequal to the determinant of amatrix A with these vectors asrows, i.e.,

Al =a AP =D AV =c’
By (4.39), we have

volume=det(A) =g ablc" =a's,b'c =a'(bxc) =a:(bxc)



4.13. Metric Volume Elements

In an n-D manifold with an orthonormal 1-form basis {é‘ } , the preferred volume
n-form @=8& A---A&" isuniqueuptoasign, i.e., given another orthonormal basis

{¢"} and corresponding volumen-form & =& A---A&", wehave @=+5. The

proof isasfollows. By definition, the components of these n-formsare o, , = ¢; .,

and .., =&, Withrespecttothebasis {&'}, thecomponentsof & are

@ = J&: ., where J is the Jacobian of the transformation {&' | — {&"}. The

proof is completed if we can show that J =+1.

To begin, applying the transformation matrix A‘j. to the metric tensor gives

gi'j'=A:'A}'gij

which can be written in matrix language as

T

g= where N =N
The determinant of thisis
g'=det(g)=det( ")gdet( ) =g[det(A)]

Since everything are real, we see that g and g’ must have the same sign and

det(/\):i\/%

Assuming {gij } iswritten with respect to an orthonormal basis, we have [see §2.29]
g, =+6, sothat g==+1 and det(A)=+,/|g|. [Notethatthethree+ signsinthe

last sentence are not correlated]. If thebasesfor {g;} and {g,;.} areboth

orthonormal, we have

[det(N)] =1 = J=det(A)=+1



which completes the proof.
Sincethevolumen-form & isuniqueonly uptoa + sign, soisitsinverse o''"*.
By definition,

@ 40" K=nl with WP " =

Wpy..n

On the other hand, given ametric tensor g;j, we can raise the indices of an n-form

= \/@ & A---A&" inagenera, possibly non-orthonormal, basis to get

((Z);)ii"'k _ g”gjm---gkr@m..r = g"g g glm T |g|

o) A8

g
wherewe've used det(g"™)=det(g*)= % Thus
(> - (4.47)
g
while
Y (4.42)

Wyy..n |g|

If gisnegative, then @' =-@. Itisconventiona inrelativity, where g is negative,
touse @' intheinversedual relations so that an extraminus sign isintroduced in
equations like (4.27).



4.14. The Exterior Derivative

The exterior derivative operator d isaderivative operator that increases by 1 the
degree of any form it operateson. In particular, for afunction, or O-form, f, the

quantity df isal-form. Furthermore, we also require that for any p-form @ and

g-forms £ and 7, it satisfies

3. d(da)=o.

Property (2) is amodified Leibniz rule which, together with (1), characterizes d as
an antiderivation. Itiscrucia for maintaining the antisymmetries of all the forms
involved. Property(3) isageneralization of the case for afunction f where

a(dr)=d[Lac| =|d[ L )| rde+2dax
oX oxX oxX

2
-0 ndx +Lddx -0
ox'ox ox
where ddx' =0 sinceit involves 2™ derivatives of X , and ;J.af -dx! Adx' =0
x!ox
2
because ——— issymmetricintheindicesi andj.
ox'ox'

Exercise 4.14
(@ Show that
d(f dg)=df dg (4.44)

(b) Use (@) to show that if

07=—0!i...j dx' A« Adx]
p!
then
3~ 160{|J J. .k q.i T, i
da=———-dx  Adx' A---AdX
p! ox



(4.45)



4.15. Notation for Derivatives

Partial derivatives will be denoted by acomma, e.g.,

of

—= 1T, 4.46

aXI W ( )

v

axjk =V/, (4.47)
o’ f

Fvrwi f (4.48)

Notein particular that % is performed 1% in (4.48). We also emphasize that
partial differentiation is not atensor operation unlessit is operating on a scalar
function [see §2.27). Thus, {f,} isal-formbut neither {V/,} nor {f ;| are
tensors.  Further examples of the present notation are

(U 'V]i =UNVj-VU,

(c]o?)i'_'jk =(-)"(P+ D, (4.49)

where the last is arewrite of (4.45).



4.16. Familiar Examples of Exterior Differentiation

Consider the 3-D Euclidean space E®. Let

a=adx’ =adx +a,dx’+a,dx’

a=d(adx’') =dajadx +addx’ =a,dx" Adx’

]
=a, X Adx"+a, dX“ A dX* +a, dX“ AdX®
=a,,0¢° Adx' +a, 0 AdX' +a, ,dx A dX® +a, dx AdX®
+a, ,0x" A dX° + &, ,dx* A dX®
=(a,,—a,, ) AdX' +(ay, —a, ;) dx A DX+ (8, 5 —ay, ) dX° A dXP
Taking the dual, we have
*da = (alv2 - azjl) * (dx2 A dxl) + (ae,l - 31,3) * (c]x1 A dx3)
+(a,5—ay,) * (A d)
Using the dual of the volume n-form
1

w=—¢
3!

8 NE NG
we have
.- PP 1 0 e -
*(dX‘/\ka)=a)(dX‘/\ka) :55' N /\Qn(dx'/\dxk)
_2n g Ag A, (A0 @A) =257 56T, C]
3 <R

jkm
= gl

=
S0 that

*~é:(a1,2_az,l)(_éa)+(as,1_a1,3)(_§2)+(a2,3_a3,2)(_él)
_(%8 _0a;)g 813_611}— (aﬁ_%j—
(ax2 6x3jel+(6xl ox® & oxt ox? &
=Vxa (4.50)
where V x istheordinary curl operator. Thus, the effect of *d onail-form & is



the same asthat of thecurl Vx onthevector a. Notethat thisconclusionis

independent of coordinate system. Next, consider

— = ix (& i 1 al e e (e
*az*(aq) =a (q) :aggjkl eJ/\ek/\el(Q)

1 o
=a'acf5i15,k| “AE =g, al EnE
o that
dra-1z,d(a & né
A= (a' &nd)

-1 -
d*a :Egjk, al dx' A dx“ Adx
1 LG A G A G LG A G A
== (s a5 XA O A X + £, &) dX A dX A dX
1 2 3,2 33 Ju1 2 3,2 Ju1 33
+—(g231 as, dx“ A dx® AdX + &, @7, dX° A dX /\dx)
1 - . - - -
+—(g312 a’, dC A dxt A X + &5, @5 dXS/\dXZ/\Xm)

= (&, +a% +a%) ' Al AdX®

=ao=(V-a)a (4.52)

where
d=dx A dCAdXE = % £y X A OX A dX

isthevolumen-form. Thus, d* isequivalent to the divergence operator V -.



4.17. Integrability Conditions for Partial Differential Equations



4.18. Exact Forms



4.19. Proof of the Local Exactness of Closed Forms



4.20. Lie Derivatives of Forms



4.21. Lie Derivatives and Exterior Derivatives Commute



4.22. Stokes' Theorem



4.23. Gauss' Theorem and the Definition of Divergence



4.24. A Glance at Cohomology Theory



4.25. Differential Forms and Differential Equations



4.26. Frobenius' Theorem (Differential Forms Version)



4.27. Proof of the Equivalence of the Two Versions of
Frobenius' Theorem



4.28. Conservation Laws



4.29. Vector Spherical Harmonics
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