Matrix

To gain more insight into the idempotent approach, we work out the details for S_3.

- **Regular Representation of S_3**

The multiplication table of S_3 is:

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>(12)</th>
<th>(23)</th>
<th>(31)</th>
<th>(123)</th>
<th>(321)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>(12)</td>
<td>(23)</td>
<td>(31)</td>
<td>(123)</td>
<td>(321)</td>
</tr>
<tr>
<td>(12)</td>
<td>(12)</td>
<td>e</td>
<td>(123)</td>
<td>(321)</td>
<td>(23)</td>
<td>(31)</td>
</tr>
<tr>
<td>(23)</td>
<td>(23)</td>
<td>(321)</td>
<td>e</td>
<td>(123)</td>
<td>(31)</td>
<td>(12)</td>
</tr>
<tr>
<td>(31)</td>
<td>(31)</td>
<td>(123)</td>
<td>(321)</td>
<td>e</td>
<td>(12)</td>
<td>(23)</td>
</tr>
<tr>
<td>(123)</td>
<td>(123)</td>
<td>(31)</td>
<td>(12)</td>
<td>(23)</td>
<td>(321)</td>
<td>e</td>
</tr>
<tr>
<td>(321)</td>
<td>(321)</td>
<td>(23)</td>
<td>(31)</td>
<td>(12)</td>
<td>e</td>
<td>(123)</td>
</tr>
</tbody>
</table>

Using the definition for regular representation:

$$D_R^g(i) = \Delta^i_m(j) = \begin{cases} 1 & \text{if } g_i = g_m g_j \\ 0 & \text{otherwise} \end{cases}$$

we have

$$D_R^e = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad D_R^{(12)} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$D_R^{(23)} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \quad D_R^{(31)} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$D_R^{(123)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad D_R^{(321)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
where the basis is \(\{ g_i \} \):

\[
\begin{align*}
 e &= \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\
 (12) &= \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\
 (23) &= \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \\
 (31) &= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
 (123) &= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \\
 (321) &= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}
\end{align*}
\]

The dual role of \(g \) as operator \& vector is easily checked out. For example,

as group elements: \((123) \cdot (321) = e\)

as operators: \(D^g[(123)] \cdot D^g[(321)] = D^g[e]\)

as operation on vectors: \(D^g[(123)] \cdot (321) = e\)

\[
\begin{align*}
 D^g &= \begin{pmatrix}
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0
 \end{pmatrix} \cdot \begin{pmatrix}
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 & 0
 \end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1
 \end{pmatrix}
\end{align*}
\]

as vectors, the group algebra is a 6-dimensional vector space &
Consider as operators, the group algebra consists of all 6×6 matrices of the form

$$D^R [r] = \begin{pmatrix}
 r^e & r^{12} & r^{23} & r^{31} & r^{123} & r^{123} \\
 r^{12} & r^e & r^{123} & r^{321} & r^{31} & r^{23} \\
 r^{23} & r^{321} & r^e & r^{123} & r^{12} & r^{31} \\
 r^{31} & r^{123} & r^{321} & r^e & r^{23} & r^{12} \\
 r^{123} & r^{31} & r^{12} & r^{23} & r^e & r^{321} \\
 r^{321} & r^{23} & r^{31} & r^{12} & r^{123} & r^e
\end{pmatrix}$$

Note that r is not invertible whenever $\det D^R [r] = 0$.

The special matrix form of the elements in the group algebra means that they can all be put into a block-diagonal form by a similarity transformation. Now,

$$\Gamma^R = A + A' + 2E$$

where A, A', E are irreducible representations of S_3.

Thus, there must exist an invertible matrix S such that:

$$S \ D^R [r] \ S^{-1} = \begin{pmatrix}
 a & 0 & 0 & 0 & 0 & 0 \\
 0 & b & 0 & 0 & 0 & 0 \\
 0 & 0 & c & d & 0 & 0 \\
 0 & 0 & e & f & 0 & 0 \\
 0 & 0 & 0 & 0 & g & h \\
 0 & 0 & 0 & 0 & i & j
\end{pmatrix}$$

with respect to the basis

$$u_i = S g_i$$

Here, $u_1 & u_2$ each spans an 1-dim invariant subspace, while $(u_3, u_4) \& (u_5, u_6)$ each spans a 2-dim invariant subspace.

Symmetrizers

In sec 5.3, we showed that the irreducible symmetrizers e_{μ} of S_3 can be obtained from the standard Young tableaux:

$\Theta_1 = \begin{array}{c}
 1 \\
 2 \\
 3
\end{array}$ gives $e_1 = s$

$\Theta_2 = \begin{array}{c}
 1 \\
 2 \\
 3
\end{array}$ gives $e_2 = s_2 a_2 = e + (12) - (31) - (321)$

$\Theta_3 = \begin{array}{c}
 1 \\
 2 \\
 3
\end{array}$ gives $e_3 = a$

$\Theta^{(23)}_2 = \begin{array}{c}
 1 \\
 2 \\
 3
\end{array}$ gives $e_2^{(23)} = e + (31) - (12) - (123)$
In terms of vectors in basis \(\{ g_i \} \), we have

\[
\begin{align*}
e_1 &= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \\
e_2 &= \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} \\
e_3 &= \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \\
e_2^{(23)} &= \begin{pmatrix} 1 \\ -1 \\ 0 \\ -1 \\ 1 \end{pmatrix}
\end{align*}
\]

That these symmetrizers are orthogonal to each other (\(e_\mu e_\nu \propto \delta_{\mu \nu} \)) can be easily verified by direct calculations. They are also basis vectors with respect to which \(D^R(r) \) are all block diagonal for all \(r \in \hat{G} \).

Since \(e_2 \) & \(e_2^{(23)} \) are symmetrizers of the 2-dim irreducible representation \(E \), they need to be supplemented by their partners to make the basis complete. This is easily done by multiplying them with \(g_i \).

For example, the partner of \(e_2 \) is

\[
r_2 = (23) e_2 = (23) + (321) - (123) - (12) = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}
\]

or

\[
r_2 = D^R[(23)] e_2 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}
\]

In terms of operators, we have

\[
\begin{align*}
e_2 &= \begin{pmatrix} 1 & 1 & 0 & -1 & -1 & 0 \\ 1 & 1 & 0 & -1 & 1 & 0 \\ -1 & 0 & 1 & 0 & 1 \\ -1 & 0 & 0 & 1 & 1 \\ 0 & -1 & 1 & 0 & 1 \\ -1 & 0 & -1 & 1 & 0 \\ -1 & 0 & -1 & 1 & 0 \end{pmatrix} & \quad r_2 &= \begin{pmatrix} 0 & -1 & 1 & 0 & 1 & -1 \\ -1 & 0 & -1 & 1 & 0 & 1 \\ 1 & 1 & 0 & -1 & -1 & 0 \\ 0 & -1 & 1 & 0 & 1 & -1 \\ -1 & 0 & -1 & 1 & 0 & 1 \\ 1 & 1 & 0 & -1 & -1 & 0 \end{pmatrix}
\end{align*}
\]

The various products among \(r_2 \) & \(e_2 \) can be easily found using, say, mathematica:

\[
e_2 e_2 = \begin{pmatrix} 3 & 3 & 0 & -3 & -3 & 0 \\ 3 & 3 & 0 & -3 & -3 & 0 \\ 0 & -3 & 3 & 0 & 3 & -3 \\ -3 & 0 & -3 & 3 & 0 & 3 \\ 0 & -3 & 3 & 0 & 3 & -3 \\ -3 & 0 & -3 & 3 & 0 & 3 \end{pmatrix} = 3 e_2
\]
\[e_2^2 = 0 \]
\[r_2 e_2 = \begin{pmatrix} 0 & -3 & 3 & 0 & 3 & -3 \\ -3 & 0 & -3 & 3 & 0 & 3 \\ 3 & 3 & 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 & 3 & -3 \\ -3 & 0 & -3 & 3 & 0 & 3 \\ 3 & 3 & 0 & -3 & 3 & 0 \end{pmatrix} = 3 r_2 \]

\[r_2 e_2 = 0 \]

The partner of \(e_2^{(23)} \) is

\[r_2^{(23)} = (23) e_2^{(23)} = (23) + (123) - (321) - (31) = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} \]

Note that although the basis \(\{ e_2, r_2, e_2^{(23)}, r_2^{(23)} \} \) are orthogonal to \(e_1 \) & \(e_3 \), its members are not mutually orthogonal. This is expected since the 2 irreducible representations are equivalent. An orthogonal basis is easily obtained by means of the Schmidt orthogonalization method.

In terms of operators, we have

\[e_1 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \]
\[e_2 = \begin{pmatrix} 1 & 1 & 0 & -1 & -1 \\ 1 & 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 & 1 \\ -1 & 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 & 1 \\ -1 & 0 & -1 & 1 & 0 \end{pmatrix} \]
\[e_3 = \begin{pmatrix} 1 & -1 & -1 & -1 & 1 \\ -1 & 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 & -1 \\ 1 & -1 & -1 & -1 & 1 \\ 1 & -1 & -1 & -1 & 1 \end{pmatrix} \]
\[e_2^{(23)} = \begin{pmatrix} 1 & -1 & 0 & 1 & 0 \\ -1 & 1 & -1 & 0 & 1 \\ 0 & 0 & -1 & -1 & 1 \\ 1 & -1 & 0 & 1 & 0 \\ -1 & 1 & -1 & 0 & 1 \\ 0 & 0 & -1 & -1 & 1 \end{pmatrix} \]

Projection Operators

Let \(L_1 \) be an invariant subspace or left ideal of \(L \).

Let \(\{ u_i \} \) be a basis of \(L_1 \).

We can then always choose a basis of \(L \) by adding to \(\{ u_i \} \) enough independent vectors to span \(L \). This basis is of the form \(\{ u_i, v_j \} \) where all \(v \)'s are orthogonal to all \(u \)'s.

An arbitrary vector in \(L \) is then of the form

\[\begin{pmatrix} u \\ v \end{pmatrix} \]

where \(u \) is in \(L_1 \).
Every operator with respect to which \(L_1 \) is invariant must then be of the form

\[
R = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}
\]

where \(A, B, C \) are matrices of appropriate dimensions

so that

\[
\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \begin{pmatrix} u \\ 0 \end{pmatrix} = \begin{pmatrix} A u \\ 0 \end{pmatrix} \in L_1
\]

Note that \(R \) is of this form only with respect to the basis \(\{ u_1 \}, \{ v_j \} \). It is easy to see that an arbitrary similarity transform will in general destroy it.

On the other hand, any properties of \(R \) derived under this special basis will be valid in a general basis if the said properties are invariant under a similarity transform.

Consider now the form of a projection operator \(P \) in this basis. By definition

\[
P \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} w \\ 0 \end{pmatrix} \quad \forall \ u, v
\]

we see that we must be of the form

\[
P = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}
\]

Obviously, \(\det P = 0 \), so that \(P^{-1} \) doesn't exist.

If we demand

\[P^2 = P \]

we have

\[
P^2 = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} A^2 & AB \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}
\]

or

\[A^2 = A \quad \text{and} \quad AB = B \]

The 2nd relation is automatically satisfied if \(B = AF \) for arbitrary \(F \).

Thus, the general solution is

\[
P = \begin{pmatrix} P^+ & P^+ Q \\ 0 & 0 \end{pmatrix}
\]

where \(P^+ \) is an idempotent operator (\(P^+ \cdot 2 = P^+ \)) and \(Q \) is arbitrary.

A special solution is \(P^+ = I \) so that

\[
P = \begin{pmatrix} I & Q \\ 0 & 0 \end{pmatrix}
\]

The effects of \(P \) on an arbitrary operator \(R = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \) are:

\[
PR = \begin{pmatrix} P^+ & P^+ Q \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} P^+ A + P^+ Q C & P^+ B + P^+ Q D \\ 0 & 0 \end{pmatrix}
\]

\[
RP = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} P^+ & P^+ Q \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} A P^+ & A P^+ Q \\ C P^+ & D P^+ Q \end{pmatrix}
\]

\[
P R P = \begin{pmatrix} P^+ & P^+ Q \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A P^+ & A P^+ Q \\ C P^+ & D P^+ Q \end{pmatrix}
\]

\[
= \begin{pmatrix} P^+ A P^+ + P^+ Q C P^+ & P^+ A P^+ Q + P^+ Q D P^+ Q \\ 0 & 0 \end{pmatrix}
\]
If L_1 is invariant under R, $C = 0$, so that

$$PR = \begin{pmatrix} P' & P'Q \\ 0 & 0 \end{pmatrix}\begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \begin{pmatrix} P'A & P'B + P'QD \\ 0 & 0 \end{pmatrix}$$

$$RP = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}\begin{pmatrix} P' & P'Q \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} AP' & AP'Q \\ 0 & DP'Q \end{pmatrix}$$

$$PRP = \begin{pmatrix} P' & P'Q \\ 0 & 0 \end{pmatrix}\begin{pmatrix} AP' & AP'Q \\ 0 & DP'Q \end{pmatrix} = \begin{pmatrix} P'AP' & PAP'Q + P'QD\ P'Q \\ 0 & 0 \end{pmatrix}$$

Thus, in general,

$$PR \neq RP$$

If we impose the condition

$$PR = RP \quad \forall R$$

P must be of the form

$$P = \alpha \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \alpha = \text{constant}$$

The condition

$$P^2 = P$$

then restricts α to the value 1.

We emphasize that P is in this simple form only with respect to the basis $\{ u_i \}, \{ v_j \}$.

Under a similarity transform wrt

$$S = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \quad S^{-1} = \begin{pmatrix} (S^{-1})_{11} & (S^{-1})_{12} \\ (S^{-1})_{21} & (S^{-1})_{22} \end{pmatrix}$$

we have

$$SPS^{-1} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix}\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} (S^{-1})_{11} & (S^{-1})_{12} \\ (S^{-1})_{21} & (S^{-1})_{22} \end{pmatrix}$$

$$= \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix}\begin{pmatrix} (S^{-1})_{11} & (S^{-1})_{12} \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} S_{11} (S^{-1})_{11} & S_{11} (S^{-1})_{12} \\ S_{21} (S^{-1})_{11} & S_{21} (S^{-1})_{12} \end{pmatrix}$$

If $PR = RP \quad \forall R$

we have

$$P^2 R = PR = PRP = RP \quad (P^2 = P)$$
Let
\[AB | x \rangle = C | y \rangle = | z \rangle \]
then
\[PAB | x \rangle = PC | y \rangle = P| z \rangle \]
\[= P \, A \, P \, P \, B \, P \, P \, | x \rangle \quad \text{if} \quad PR = RP = PRP \]
\[= A_P \, B_P \, | x_P \rangle \]
\[= PC \, P \, | y \rangle = C_P \, | y_P \rangle \]
\[= | z_P \rangle \]
where the subscript denotes the projected component.

Thus, the projector preserves the operator multiplication if it commutes with every operator.

Consider
\[AA^{-1} = E \]
we have
\[PAA^{-1} = PE \]
\[= P \, A \, P \, A^{-1} \, P = P \]
\[= A_P \, A^{-1}_P = E_P \]

Thus, \(P \) is the projected component of the identity. It also plays the role of the identity operator for projected operators \(A_P \).

Idempotents

The basis for \(D^R \) is just the group elements \(\{ g_i \} \).

Let the basis of the completely decomposed representation \(D \) be \(\{ u_{\mu a} \} \), where \(\mu \) runs through all the irreducible representations & \(a = 1, \ldots, d_a \) with \(d_a \) being the dimension of the representation \(a \). By definition,
\[D(r)^{a \alpha}_{\beta \beta} = \delta^{a \alpha}_{\beta \beta} \quad \forall r \in \hat{G} \]

These two basis must be related by an invertible transformation \(S \):
\[u_{a a} = g_i S^i_{a a} \]
\[g_i = u_{a a} S^a_{i j} \]

with
\[S^i_{a a} S^a_{j b} = \delta^i_j \quad \quad S^i_{a a} S^b_{i \alpha} = \delta^{\alpha}_{a} \delta^{b}_{a} \]

Group multiplication among \(\{ u_{\mu a} \} \) is found with the help of the regular representation
\[D^R(g_i)_{\beta \beta} = \Delta_{i k} = \begin{cases} 1 & \text{for } g_j = g_i \, g_k \\ 0 & \text{otherwise} \end{cases} \]
as
\[u_{\beta b} u_{a a} = g_j S^j_{\beta b} \, g_i S^i_{a a} \]
\[= g_k \, \Delta^k_{ij} \, S^j_{\beta b} \, S^i_{a a} \]
\[= g_k \, D^R(g_i)^{j}_{\beta b} S^i_{a a} \]
\[= g_k \, D^R(g_j)^{i}_{\beta b} S^i_{a a} \]
\[= g_k D^R(u_{bb})^{ij}_{\beta} S^i_{a a} \]

By definition
\[D(r)^{a \alpha}_{\beta \beta} = S^{a \alpha}_{j} \, D^R(r)^{j}_{\beta b} \, S^i_{a a} = \delta^{a \alpha}_{\beta \beta} \quad \forall r \in \hat{G} \]

so that
\[D^R(u_{bb})^{ij}_{\beta} S^i_{a a} = S^k_{a \gamma} D^R(u_{bb})^{\gamma \alpha}_{a a} \]
\[= S^k_{a \gamma} D^R(u_{bb})^{\gamma \alpha}_{a a} \]
Hence

\[u_{\beta \gamma} u_{\alpha \alpha} = g_{\alpha} S^k_{\alpha \alpha} \mathcal{D}^{(0)} \left(u_{\beta \gamma} \right)_k \]

\[= u_{\alpha \alpha} S^k_{\alpha \alpha} \mathcal{D}^{(0)} \left(u_{\beta \gamma} \right)_k \]

which is simply the definition of irreducible representation \(\mathcal{D}^\alpha \) of the operator \(u_{\beta \gamma} \) with respect to the irreducible basis set \(\{ u_{\alpha \alpha} : \alpha = 1, \ldots, d_\alpha \} \).

Since \(L^\alpha \) is an invariant subspace, it is meaningful to write

\[g_{\alpha \alpha} = \sum_\alpha u_{\alpha \alpha} S^{(\alpha) \alpha}_{\alpha \alpha} \]

\[= \sum_\alpha g_{\alpha \alpha} \]

where \((\alpha) \) means that \(\alpha \) is exempted from the Einstein summation notation, &

\[g_{\alpha \alpha} = u_{\alpha \alpha} S^{(\alpha) \alpha}_{\alpha \alpha} \]

In particular, the identity element \(E = g_1 \) is given by

\[E = u_{\alpha \alpha} S^{\alpha \alpha} = \sum_\alpha u_{\alpha \alpha} S^{(\alpha) \alpha}_{\alpha \alpha} = \sum_\alpha g_{\alpha \alpha} \]

\[g_{\alpha \alpha} = u_{\alpha \alpha} S^{(\alpha) \alpha}_{\alpha \alpha} \]

The idempotent \(e_\alpha \) is defined as a vector proportional to a basis vector, say, \(u_{\alpha 1} \), of \(L^\alpha \):

\[e_\alpha = e_\alpha u_{\alpha 1} \]

where \(e_\alpha \) is a constant. Furthermore, we demand

\[E = \sum_\alpha e_\alpha \]

This means that \(e_\alpha \) is equal to \(g_{\alpha 1} \) for a special choice of \(S \) such that

\[S^{\alpha \alpha} = \delta^{\alpha 1} S^{\alpha 1} \quad \forall \alpha \]

Thus

\[e_\alpha = u_{\alpha 1} S^{(\alpha) 1} \quad \text{or} \quad c_\alpha = S^{\alpha 1} \]

We also have

\[S_{\alpha \alpha} S^{\alpha \alpha} = \delta_{\alpha 1} = S_{\alpha 1} S^{\alpha 1} \]

The representation of \(e_\alpha \) in \(L^\alpha \) is, by definition,

\[e_\alpha \left| u_{\alpha \alpha} \right\rangle = \left| u_{\alpha \alpha} \right\rangle \mathcal{D}^{(0)} \left(e_\alpha \right)_a \]

\[= u_{\alpha 1} S^{(\alpha) 1} \left| u_{\alpha \alpha} \right\rangle \]

\[= \mathcal{D}^{(0)} \left(u_{\alpha 1} \right)_b S^{(\alpha) 1} \]

Hence,

\[\mathcal{D}^{(0)} \left(e_\alpha \right)_b = \delta^{b \alpha} \]

Next, we demand \(e_\alpha \) to be the projection operator onto one of the basis, say, \(u_{\alpha 1} \), of \(L^\alpha \).

Thus, with respect to the basis \(\{ u_{\alpha \alpha} : \alpha = 1, \ldots, d_\alpha \} \),

\[e_\alpha \left| u_{\alpha \alpha} \right\rangle = \left| u_{\alpha \alpha} \right\rangle \mathcal{D}^{(0)} \left(e_\alpha \right)_a \]

with

\[\mathcal{D}^{(0)} \left(e_\alpha \right)_b = \delta^{\alpha 1} \mathcal{D}^{(0)} \left(e_1 \right)_b \]

or

\[\mathcal{D}^{(0)} \left(e_\alpha \right) = \begin{pmatrix} \mathcal{D}^{(0)} \left(e_\alpha \right)_1 & \mathcal{D}^{(0)} \left(e_\alpha \right)_1 & \ldots & \mathcal{D}^{(0)} \left(e_\alpha \right)_1 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ldots & \vdots \\ 0 & 0 & \ldots & 0 \end{pmatrix} \]
To see if

Let us examine the definition of the projector \(P_a: \)

\[
P_a \{ r \} \equiv \{ r e_a \}
\]

Writing

\[
r = r^i g_i = r^a u_{a a}
\]

we have

\[
e_a = r^b u_{b b} u_{(a) a} S^{(a) a_1}
\]

To evaluate \(u_{b b} u_{a a} \), we need the regular representation

\[
D^R(g) f = \delta_{f k} = \begin{cases} 1 & \text{for } g_j = \delta_{j k} \\
0 & \text{otherwise}
\end{cases}
\]

so that

\[
u_{b b} u_{a a} = g_j S_{j b} g_i S_{i a a} = g_k \Delta_{ji} S_{j b} S_{i a a} = g_k D^R(g) S_{j b} S_{i a a} = g_k D^R(g) S_{j b} S_{i a a} = g_k D^R(u_{b b}) f S_{i a a}
\]

By definition

\[
D(r)^a b = S^{a j} D^R(r) f S_{j b} = \delta^{a b} D^R(r)^a b
\]

so that

\[
D^R(u_{b b}) f S_{i a a} = S^{k c} D(u_{b b} c) \gamma^c a_a = S^{k c} D^R(u_{b b} c) a_a
\]

Hence

\[
u_{b b} u_{a a} = g_k S_{k c} D^R(u_{b b} c) a_a = u_k D^R(u_{b b} c) a_a
\]

which is simply the definition of irreducible representation \(D^R \) of the operator \(u_{b b} \) with respect to the irreducible basis set \(\{ u_{a a}; a = 1, \ldots, d_a \} \).

Therefore

\[
e_a = r^b u_{b b} u_{(a) a} S^{(a) a_1}
\]

\[
= r^b = u_{a c} D^R(u_{b b} c) a S^{(a) a_1} = u_{a c} D^R(r^b u_{b b}) c a S^{(a) a_1} = u_{a c} D^R(r)^c a S^{(a) a_1}
\]

Thus \(r e_a \in L^a \) so that \(P_a \) is indeed a projector onto \(L^a \).

Obviously, this relation can also be written down immediately by treating \(r \) as an operator & \(e_a \) a vector in the invariant subspace \(L^a \).

Consider now the product \(e_a r e_a \).

\[
e_a r e_a = u_{(a) b} D^R(r)^c d S^{(a) a_1}
\]

\[
= u_{(a) b} S^{(a) b} u_{(a) c} D^R(r)^c d S^{(a) a_1} = u_{(a) f} D^R(u_{(a) b}) f S^{(a) b} D^R(r)^c d S^{(a) a_1}
\]

\[
= u_{(a) f} D^R(r)^c d S^{(a) a_1}
\]

\[
= u_{(a) f} D^R(e_a r)^c d S^{(a) a_1}
\]