
Tensors

� Definition: GLHm, CL
Let Vm be a complex linear space of dimension m.

The General Linear Group  GLHm, CL  is the group of all invertible linear transformations on Vm.

� Definition: Tensor Space Vm
n

The tensor space  Vm
n   is the direct product of  n linear spaces Vm.

Vm
n º Vm ´Vm ´ … ´Vm

Elements of  Vm
n   are called tensors of rank  n.

� Note

The above is actually the definition of contravariant tensors. 

Covariant & mixed tensors are obtained by replacing all or some of the  Vm 's  by their dual spaces  Wm.

In the theory of tensor analysis, tensors are defined in terms of the transformation properties of their components. Thus,
coordinate systems play a central part of the theory at the very beginning.

The definition given here emphasizes the geometric nature of tensors which are independent of coordinate systems. It is the

approach adopted in the theory of differential geometry. 

� Natural Basis

Given a basis 8 i \ < for  Vm , the natural basis for  Vm
n   is

i1 … in \ = i1 \ ´ … ´ in \
� x \ = â

i1 … in

xi1 … in   i1 … in \ º xi1 … in   i1 … in \ " x Î Vm
n

Setting
I = 8 i1 … in <

we can write:
i1 … in \ = I \
x \ = â

I

xI  I \
The xI  's are called the tensor components of  x.



� Operators

For any operator  g  on  Vm  defined by

g i \ = j \ g j
i

the corresponding operator  G  on  Vm
n   as

G I \ º g i1 \ ´ … ´ g in \
          = j1 \ ´ … ´ jn \ g j1

i1 … g jn
in

         = â
J

J \ G J
I

where

G J
I = G j1 … jn

i1 … in = g j1
i1 … g jn

in
. 

For  g Î GLHm, CL , the matrix  I g j
i M  forms a  m - D  representation.

The matrix  I G J
I M  then forms a  n m - D representation of  GLHm, CL.

G x \ = xG \ = xI G I ] = xI J ] G J
I = xG

J J ]
� xG

J = G J
I xI

Obviously, this representation is in general reducible.

� Representation of  Sn on Vm
n

" p Î Sn ,  define operator  P  on  Vm
n    as

P x \ = xP \
' xP

I = x p I p I = p 8 i1 … in < = 9 ip1
… ipn =

ie. xP
i1 … in = x ip1

… ipn

Since
x \ = xI I ] xP \ = xP

I I ]
we have

xP \ = P x \ = xI P I ]
        = xP

J J ] = x p J J ] = xI p-1 I ]
� P I \ = p-1 I ]
ie. P i1 … in \ = p-1 8i1 … in< ] = ip1

-1 … ipn
-1 ]

The matrix representation  IP I
J M  of  p  on  Vm

n   is defined by

P I \ = J \ P J
I = p-1 I ]

ie. j1 … jn \ P j1 … jn
i1 … in = ip1

-1 … ipn
-1 ]

� PJ
I = P j1 … jn

i1 … in = ∆ ip1
-1

j

1
… ∆ ipn

-1

j

n
= ∆ i1

j

p1
… ∆ in

j

pn

Obviously, this representation is in general reducible.

� Definition: Symmetry Preserving Transformations

Let  I DI
J M  be the matrix representation of a linear transformation D  on  Vm

n .

D  is symmetry preserving � Dp I
p J = DI

J " p Î Sn

eg. Elements of  both  GLHm, CL  &  Sn  are symmetry preserving.

� Theorem: G P = P G
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�

Theorem: G P = P G

Let
 g Î GLHm.CL, p Î Sn

� G P = P G on  Vm
n

� Definition: Tensors of Symmetry QΛ

p

Tensors of symmetry  QΛ

p
  are elements of the set  9 eΛ

p
Α ] , Α ] Î Vm

n =
where eΛ

p
  is the Young symmetrizer of the Young tableau  QΛ

p
.

� Definition: Tensors of Symmetry Class Λ

Tensors of symmetry class Λ  are elements of the set  8 r eΛ Α \ ; r Î Sn , Α \ Î Vm
n <

where Sn  is the group algebra of Sn

  eΛ  is the Young symmetrizer of the normal Young tableau  QΛ. 

 The presence of  r  in the definition means that the symmetry class is characterized  by  the Young diagrams instead of
individual tableaux.

� Definition:  TΛHΑL
For a given  Α \ Î Vm

n  ,  we define

TΛHΑL º 8 r eΛ Α \ ; r Î Sn <
where Sn is the group algebra of  Sn

 eΛ  is the Young symmetrizer of the normal Young tableau  QΛ. 

� Theorem: TΛHΑL  is invariant under Sn

� Theorem: Rep of Sn on TΛHΑL = IR generated by eΛ on Sn

� Theorem: TΛHΑL = TΛH ΒL   or TΛHΑL Ý TΛH ΒL = F

� Theorem: TΛHΑL Ý TΜH ΒL = F if Λ ¹ Μ
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