Tensors

■ Definition: $GL(m, \mathbb{C})$

Let V_m be a complex linear space of dimension m.

The General Linear Group $GL(m, \mathbb{C})$ is the group of all invertible linear transformations on V_m .

■ Definition: Tensor Space V_m^n

The tensor space V_m^n is the direct product of n linear spaces V_m .

$$V_m^n \equiv V_m \times V_m \times \cdots \times V_m$$

Elements of V_m^n are called **tensors** of rank n.

Note

The above is actually the definition of **contravariant** tensors.

Covariant & mixed tensors are obtained by replacing all or some of the V_m 's by their dual spaces W_m .

In the theory of **tensor analysis**, tensors are defined in terms of the transformation properties of their components. Thus, coordinate systems play a central part of the theory at the very beginning.

The definition given here emphasizes the geometric nature of tensors which are independent of coordinate systems. It is the approach adopted in the theory of **differential geometry**.

Natural Basis

Given a basis $\{ | i \rangle \}$ for V_m , the **natural basis** for V_m^n is

$$\mid i_{1} \dots i_{n} \rangle = \mid i_{1} \rangle \times \dots \times \mid i_{n} \rangle$$

$$\mid x \rangle = \sum_{i_{1} \dots i_{n}} x^{i_{1} \dots i_{n}} \mid i_{1} \dots i_{n} \rangle \equiv x^{i_{1} \dots i_{n}} \mid i_{1} \dots i_{n} \rangle$$

$$\forall x \in V_{m}^{n}$$

Setting

$$I = \{ i_1 \ldots i_n \}$$

we can write:

$$|i_1 \dots i_n\rangle = |I\rangle$$

 $|x\rangle = \sum_I x^I |I\rangle$

The x^I 's are called the **tensor components** of x.

For any operator g on V_m defined by

$$g \mid i \rangle = \mid j \rangle g^{j}$$

the corresponding operator G on V_m^n as

$$G \mid I \rangle \equiv g \mid i_1 \rangle \times \dots \times g \mid i_n \rangle$$

$$= \mid j_1 \rangle \times \dots \times \mid j_n \rangle g^{j_1}{}_{i_1} \dots g^{j_n}{}_{i_n}$$

$$= \sum_{I} \mid J \rangle G^{I}{}_{I}$$

where

$$G^{J}_{I} = G^{j_{1} \dots j_{n}}_{i_{1} \dots i_{n}} = g^{j_{1}}_{i_{1}} \dots g^{j_{n}}_{i_{n}}$$

For $g \in \operatorname{GL}(m, \mathbb{C})$, the matrix $\left(g^{j}_{i}\right)$ forms a m-D representation. The matrix $\left(G^{J}_{I}\right)$ then forms a nm-D representation of $\operatorname{GL}(m, \mathbb{C})$.

$$G \mid x \rangle = \mid x_G \rangle = x^I G \mid I \rangle = x^I \mid J \rangle G^J = x_G^J \mid J \rangle$$

$$\longrightarrow x_G^J = G^J x^I$$

Obviously, this representation is in general reducible.

■ Representation of S_n on V_m^n

 $\forall p \in S_n$, define operator P on V_m^n as

$$P\mid x \rangle = \mid x_{P} \rangle$$

$$\Rightarrow x_{P}^{I} = x^{pI} \qquad pI = p\{i_{1} \dots i_{n}\} = \{i_{p_{1}} \dots i_{p_{n}}\}$$
ie.
$$x_{P}^{i_{1} \dots i_{n}} = x^{i_{p_{1}} \dots i_{p_{n}}}$$

Since

$$|x\rangle = x^I |I\rangle \qquad |x_P\rangle = x_P^I |I\rangle$$

we have

The matrix representation (P^I_J) of p on V_m^n is defined by

$$\begin{split} P \mid I \rangle &= \mid J \rangle P^{J}{}_{I} = \mid p^{-1} I \rangle \\ \text{ie.} \qquad \mid j_{1} \dots j_{n} \rangle P^{j_{1} \dots j_{n}}{}_{i_{1} \dots i_{n}} = \mid i_{p_{1}^{-1}} \dots i_{p_{n}^{-1}} \rangle \\ \longrightarrow \qquad P^{J}{}_{I} &= P^{j_{1} \dots j_{n}}{}_{i_{1} \dots i_{n}} = \delta^{j}_{i_{p_{1}^{-1}}} \dots \delta^{j}_{i_{p_{n}^{-1}}} = \delta^{j}_{i_{1} p_{1}} \dots \delta^{j}_{i_{n} p_{n}} \end{split}$$

Obviously, this representation is in general reducible.

Definition: Symmetry Preserving Transformations

Let $(D^I{}_J)$ be the matrix representation of a linear transformation D on V_m^n . D is **symmetry preserving** $\iff D^{pI}{}_{pJ} = D^I{}_J \ \forall \ p \in S_n$

eg. Elements of both $GL(m, \mathbb{C})$ & S_n are symmetry preserving.

Theorem: GP = PG

Let

$$g \in GL(m.\mathbb{C}), \ p \in S_n$$

$$\implies GP = PG \quad \text{on } V_m^n$$

■ Definition: Tensors of Symmetry Θ_{λ}^{p}

Tensors of symmetry Θ^p_{λ} are elements of the set $\{e^p_{\lambda} \mid \alpha \rangle, \mid \alpha \rangle \in V^n_m\}$ where e^p_{λ} is the Young symmetrizer of the Young tableau Θ^p_{λ} .

■ Definition: Tensors of Symmetry Class λ

Tensors of symmetry class λ are elements of the set $\{re_{\lambda} \mid \alpha \rangle; r \in S_n, \mid \alpha \rangle \in V_m^n\}$ where S_n is the group algebra of S_n $e_{\lambda} \text{ is the Young symmetrizer of the normal Young tableau } \Theta_{\lambda}.$

The presence of r in the definition means that the symmetry class is characterized by the Young diagrams instead of individual tableaux.

■ Definition: $T_{\lambda}(\alpha)$

For a given $\mid \alpha \mid \in V_m^n$, we define $T_{\lambda}(\alpha) \equiv \{ r \, e_{\lambda} \mid \alpha \mid ; \ r \in \mathcal{S}_n \}$ where \mathcal{S}_n is the group algebra of S_n $e_{\lambda} \text{ is the Young symmetrizer of the normal Young tableau } \Theta_{\lambda}.$

■ Theorem: $T_{\lambda}(\alpha)$ is invariant under S_n

■ Theorem: Rep of S_n on $T_{\lambda}(\alpha) = IR$ generated by e_{λ} on S_n

■ Theorem: $T_{\lambda}(\alpha) = T_{\lambda}(\beta)$ or $T_{\lambda}(\alpha) \cap T_{\lambda}(\beta) = \Phi$

■ Theorem: $T_{\lambda}(\alpha) \cap T_{\mu}(\beta) = \Phi$ if $\lambda \neq \mu$