
1.5.  Observables

According to the corresponding principle, any classical real function A =A(x, p) on the phase space 

becomes a quantum observable if x & p are replaced by their operator counterparts, provided all 

operator ordering issues are resolved.  Since all measured values on the observable must be real, 

the operator

A
 =Ax, p (1.206)

must be hermitian.  If the procedure leads to multiple possibilities, additional conditions, such as 

comparisons to experiments, must be imposed to remove any ambiguity [ see Chap 8 ].

If A  is hermitian, its eigenstates a 〉  defined by

A


a 〉 = a a 〉 (1.207)

form a basis that spans the Hilbert space of the system.  By properly dealing with any case of 

degeneracy, one can always select a set of orthonormal eigenstates that is also complete:

〈 a a ' 〉 = δa a'


a

a 〉 〈 a = 1 (1.208)

By definition, any measurement on A gives the value a if the system is in state a 〉.  Using (1.208), 

we can write

Ψ(t) 〉 =
a

a 〉 〈 a Ψ (t) 〉 (1.209)

The expectation value of A with respect to state Ψ is therefore

 Ψ(t) A
 Ψ(t)  = 

a, a'

〈 Ψ(t) a ' 〉  a ' A


a  〈 a Ψ(t) 〉 (1.209a)

   =
a

a 〈 a Ψ(t) 〉 2

which shows that the probability of getting the value a from a measurement of A when the system is 

in state Ψ is proportional to

〈 a Ψ(t) 〉 2 (1.210)

For example, in the x-representation, the wave function

 Ψ(x, t) = 〈 x Ψ(t) 〉 (1.211)

is just the probability amplitude for finding the particle at x.   A slight generalization of (1.209a) gives

 Φ(t) A
 Ψ(t)  =  d

3 x '  d
3 x 〈 Φ(t) x ' 〉  x ' A


x  〈 x Ψ(t) 〉

If A takes the form (1.206), we have

 x ' A


x  =A x ',
ℏ

i
∇ ' δ(x ' - x)

        =A x, -
ℏ

i
∇ δ(x ' - x)

so that, after an integration by part,

 Φ(t) A
 Ψ(t)  =  d

3 x '  d
3 x 〈 Φ(t) x ' 〉 δ(x ' - x)A x,

ℏ

i
∇ 〈 x Ψ(t) 〉

   =  d
3 x 〈 Φ(t) x 〉A x,

ℏ

i
∇ 〈 x Ψ(t) 〉 (1.212)



   =  d
3 xΦ* (x, t)A x,

ℏ

i
∇ Ψ(x, t)

1.5.1.  Uncertainty Relation

The following shows that the uncertainty principle

Δ xi Δ pj ≥ ℏ δi j (1.213)

is a consequence of the canonical commutation relations

 xi, pj = i ℏ δi j (1.214)

In general, the only measurable values of an observable A are the eigenvalues a of the operator A  

defined by

A


a 〉 = a a 〉 (1.215)

If the system is in one of the eigenstates, a 〉, then the measured value is a and the system stays 

in state a 〉 afterwards.  If the system is in a normalized state

Ψ(t) 〉 =
a

a 〉 〈 a Ψ (t) 〉 (1.216)

the probability of measuring a value a ' is 〈 a ' Ψ(t) 〉 2.  Immediately after getting a value a ', the 

system collapses to state a ' 〉.

If the measurement of another observable B does not affect the measurement of A, the eigen-

states a 〉 must also be eigenstates of B, i.e.,

B


a 〉 = ba a 〉 (1.217)

then

A

B


a 〉 = ba A


a 〉 = ba a a 〉

B

A


a 〉 = a B a 〉 = a ba a 〉

→ A B -B A a  = 0 ∀ a 〉 (1.218)

∴ A , B  = 0 (1.219)

Thus, (1.219) implies A an B are not subject to the uncertainty principle, i.e.,

ΔA ΔB = 0

Conversely, (1.213) must be due to (1.214).

1.5.2.  Density Matrix and Wigner Function

The density operator for a pure state Ψ is defined as

ρ(t) = Ψ(t)  〈 Ψ(t) (1.220)

In the x-representation, the density matrix has elements

ρ(x1, x2 ; t ) =  x1 ρ(t) x2 

       = 〈 x1 Ψ (t) 〉 〈 Ψ(t) x2 〉 (1.221)

The expectation value of any operator f x, p with respect to Ψ can be written as

 Ψ(t) f x, p Ψ (t)  =  d
3 x 〈 Ψ(t) x 〉  x f x, p Ψ(t) 

  =  d
3 x  x f x, p Ψ(t)  〈 Ψ(t) x 〉

  =  d
3 x  x f x, p ρ(t) x 
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  = tr f x, p ρ(t)  (1.222)

Thus, ρ acts like the statistical operator in statistical mechanics.

Expanding Ψ(t) 〉 in terms of the energy eigenstates En 〉, we have

Ψ(t) 〉 =
n

 En 〉 〈En Ψ(t) 〉

〈 Ψ (t) =
m

 〈 Ψ (t) Em〉 〈Em

and (1.220) becomes

ρ(t) = 
n,m

En 〉 〈En Ψ(t) 〉 〈 Ψ(t) Em〉 〈Em

      = 
n,m

En 〉 En ρ (t) Em 〈Em

      = 
n,m

En 〉 ρnm(t) 〈Em (1.223)

Let 

X =
1

2
(x1 + x2) Δ x = x1 - x2

→ x1 =X +
1

2
Δ x x2 =X -

1

2
Δ x

∴ ρ(x1, x2 ; t ) = ρ X +
1

2
Δ x, X -

1

2
Δ x ; t

The Wigner function is the Fourier transform on the relative coordinates Δ x,

W(X, p; t) = 
d3 Δ x

( 2 π ℏ )3
ei p ·Δ x / ℏ ρ X +

1

2
Δ x, X -

1

2
Δ x ; t (1.224)

For a particle of mass M in a potential V(x), it can be shown that W satisfies the Wigner-Liouville eq. 

[ see §7.G of L.E.Reichl, “A Modern Course in Statistical Physics” for proof ]
∂

∂ t
+v ·∇X W(X, p; t) =Wt(X, p; t) (1.225)

where

v =
p

M

    Wt (X, p; t) =
i

ℏ


d3 q

( 2 π ℏ )3
W(X, p -q; t)

× d
3 Δ x V X +

1

2
Δ x -V X -

1

2
Δ x  ei q ·Δ x / ℏ

(1.226)

In the limit ℏ → 0, only terms small in both q  and Δ x  can avoid rapid fluctuations in ei q ·Δ x / ℏ.  

Keeping the lowest order terms only, we get

ΔV =V X +
1

2
Δ x -V X -

1

2
Δ x ≈ Δ x ·∇XV(X)

→  d
3 Δ x (ΔV ) ei q ·Δ x / ℏ ≈

ℏ

i
[∇XV(X) ] ·∇q d

3 Δ x ei q ·Δ x / ℏ

   =
ℏ

i
(2 π ℏ)3 [∇XV(X)] ·∇qδ(q)

∴ Wt (X, p; t) ≈  d
3 qW(X, p -q; t) [∇XV(X)] ·∇qδ(q)
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       = [∇XV(X)] ·∇pW(X, p; t)

       = -F(X) ·∇pW(X, p; t)

where

F(X) = -∇XV(X)

is the force due to V.

(1.225) thus becomes the classical Liouville equation
∂

∂ t
+v ·∇X W(X, p; t) = -F(X) ·∇pW(X, p; t) (1.227)

1.5.3.  Generalization to Many Particles

Generalization to a system of N distinguishable particles with Cartesian coordinates x = (x1, ..., xN) 

is straightforward.  With p = (p1, ..., pN) , the Schrodinger eq. is 

i ℏ
∂

∂ t
Ψ(t) 〉 =H x, p, t Ψ(t)  (1.228)

In the x-representation, the basis vectors are direct products of the 1-particle states

 x1, ..., xN 〉 ≡ x1 〉⊗ ...⊗ xN 〉 

with orthonormality

〈 x1, ..., xN x1
′, ..., xN

′ 〉 = δ(x1 - x1
′) ... δ(xN - xN

′ ) (1.229)

and completeness

 d
3 x1 ...  d

3 xN x1, ..., xN 〉 〈 x1, ..., xN = 1 (1.229a)

The analog of (1.166) is

 x1, ..., xN p Ψ  =
ℏ

i
∇x 〈 x1, ..., xN Ψ 〉 (1.230)
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