|.5. Observables

According to the corresponding principle, any classical real function A = A(x, p) on the phase space
becomes a quantum observable if x & p are replaced by their operator counterparts, provided all
operator ordering issues are resolved. Since all measured values on the observable must be real,
the operator

A=A(%, p) (1.206)
must be hermitian. If the procedure leads to multiple possibilities, additional conditions, such as
comparisons to experiments, must be imposed to remove any ambiguity [ see Chap 8 ].
If A is hermitian, its eigenstates | a) defined by

Ala)=a|a) (1.207)
form a basis that spans the Hilbert space of the system. By properly dealing with any case of
degeneracy, one can always select a set of orthonormal eigenstates that is also complete:

(a | a'y= Oaa

> la)a|=1 (1.208)

a

By definition, any measurement on A gives the value a if the system is in state | a). Using (1.208),
we can write

| W(t)y=> |a)(a|w) (1.209)

The expectation value of A with respect to state W is therefore

(wity | A W)= (Wi a'y(a | Al a)(a | W) (1.209a)
=Za | (a| W) |?

which shows that the probability of getting the value a from a measurement of A when the system is
in state Wis proportional to
| a| W) (1.210)

For example, in the x-representation, the wave function
Wix, f)=(x | W) (1.211)
is just the probability amplitude for finding the particle at x. A slight generalization of (1.209a) gives

((D(t) | A| w(t)>=fd3x' Jd3x(cb(t) | x'><x' |A| x)<x| W)
If A takes the form (1.206), we have
(x'1A] x>=A(x', ?V')(S(x'—x)
YRLY PR

so that, after an integration by part,

(@) A w(t)>=fd3x'Jd3x(¢(t) | x')6(x'—x)A(x, ?V)(x| W)

:fd3x<q>(t) | x)A(x, iv)u | W(t)) (1.212)
]
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h
= Jd3x¢*(x, t)A(x, —_V)W(X, f)
i

|.5.1. Uncertainty Relation

The following shows that the uncertainty principle

AX,'AijfI(S,'j (1.213)
is a consequence of the canonical commutation relations
[%. Bj]=ih6; (1.214)

In general, the only measurable values of an observable A are the eigenvalues a of the operatorﬁ\
defined by

Ala)=a|a) (1.215)
If the system is in one of the eigenstates, | a), then the measured value is a and the system stays
in state | a) afterwards. If the system is in a normalized state

| Wt)y=> |a)(a| W) (1.216)
a
the probability of measuring a value a'is | (a' | W(t)) |?. Immediately after getting a value a', the
system collapses to state | a').

If the measurement of another observable B does not affect the measurement of A, the eigen-
states | a) must also be eigenstates of B, i.e.,

B|a)=b,|a) (1.217)
then

AB|a)y=b,A|a) =b,a|a)

BA | @) a§| ay =ab, | a)

2\1%-1“3/\;)|a):0 Y | a) (1.218)
[A,é]:o (1.219)

N

Thus, (1.219) implies A an B are not subject to the uncertainty principle, i.e.,
AAAB=0

Conversely, (1.213) must be due to (1.214).

1.5.2. Density Matrix and Wigner Function

The density operator for a pure state W is defined as
Pty = | Wt )(W(Y) | (1.220)
In the x-representation, the density matrix has elements
p(x1, x2;t)=(x1 | p(t) | x2)
=(x1 | W({))(W(D) | x2) (1.221)

The expectation value of any operator (X, p) with respect to ¥ can be written as

(W) | f(%, B) | W) = fd?’x(w(t) | x) (x| f(x, B) | W)
:fd?’x(x | f(x, B) | W(t) }(W(t) | x)
= fde’x(x | f(x, B) B(t) | x)
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=tr[ f(x, ﬁ) ﬁ(t)] (1.222)
Thus, p acts like the statistical operator in statistical mechanics.

Expanding | W(t)) in terms of the energy eigenstates | E,), we have

| W(t)=D | Ex)(En| (1))
(W) | =D (W) | Em)(Enm |

and (1.220) becomes
P)=D | En)(En| W) WD) | Em)(Enm |

= Z | E,,)(En | o (1) | Em><Em |

=> 1 En) Pom(t)(Enm | (1.223)
n,m
Let
= — (X1 +X2) AXx=x1-Xo
2
1
- x1=X+—Ax x=X-—AXx
1 1
p(x1,x2;t)=p(X+—Ax,X— —Ax;t)
2 2
The Wigner function is the Fourier transform on the relative coordinates A x,
BAx 1 1
W(X, p;t)= j—e”’ x p(X+ —Ax, X-—Ax;t| (1.224)
(2mh)3 2 2

For a particle of mass M in a potential V(x), it can be shown that W satisfies the Wigner-Liouville eq.
[ see §7.G of L.E.Reichl, “A Modern Course in Statistical Physics” for proof ]

0
( —+v-Vx) W(X, p; t) = WX, p; ) (1.225)
ot
where

V=

SR

3

i a’q
Wi (X, p;t) = — j —— WX, p-g:) (1.226)
al(2rm

1 1 .
deSAx[\/(m EAX)— v(x- EAX)] g'a Ax/h

In the limit - 0, only terms small in both | g | and | Ax | can avoid rapid fluctuations in e
Keeping the lowest order terms only, we get

1 1
AV= \/(X+ —Ax)— \/(x- —Ax)zAxVXV(X)
2 2

iq-Ax/h

. h .
> fd?’Ax(A V)eldAxIhy —_[VXV(X)]qud?’Axe'q'“”"
)
h
=—(2 1t h)° [Vx V(X)]- V4 6(q)

Wi (X, p; f) = f o qW(X, p-g; 1) [Vx V(X)]-Vq 6()
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= [Vx V(X)]- Vo W(X, p; 1)
=-F(X)-VpoW(X, p; )
where

F(X) =-Vx V(X)

is the force due to V.

(1.225) thus becomes the classical Liouville equation

( £+v-vx) W(X, p; t) = ~F(X)-V, W(X, p; ) (1.227)

1.5.3. Generalization to Many Particles

Generalization to a system of N distinguishable particles with Cartesian coordinates x = (x4, ..., xn)
is straightforward. With p=(p1, ..., pn) , the Schrodinger eq. is

0
iﬁa— | W(O)Y=H(x, b t) | VD) (1.228)
t
In the x-representation, the basis vectors are direct products of the 1-particle states

| X1, .., XN) = | X1)®...Q | Xn)
with orthonormality

Xty ey XN | X, oy XN ) = O(X1 = Xq) .. O(XN — X)) (1.229)
and completeness
J'd3X1 jd3XN | X1, ... XN>( X1, oy XN | =1 (12293)

The analog of (1.166) is

. h
(X1, oo X | By | W)= =V { X1, o Xy | W) (1.230)
)



