
1.10.  Time Evolution Amplitude

The matrix elements of the time evolution operator in the x-representaion are called time evolution 

amplitudes, or propagators :

( x, t x ', t ' ) ≡  x U
 (t, t ') x '  (1.295)

They give the probability amplitudes of finding the particle at point x at time t given that it was at 

point x ' at time t '. 

For H  time-independent,

( x, t x ', t ' ) =  x e
-i H


( t-t ' ) / ℏ

x '  (1.296)

Taking the matrix elements of the eq. of motion for U , (1.265), we have
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∇ , t  ( x, t x ', t ' ) = 0 (1.297)

The retarded time evolution operator is defined as

U
R(t, t ') ≡ U

 (t, t ') for t > t '
0 for t < t '

(1.298)

along with the associated retarded time evolution amplitudes

( x, t x ', t ' )R ≡  x U
R (t, t ') x '  (1.299)

Using the Heaviside step function,

Θ(t) ≡ 
1 for t > 0
0 for t < 0

(1.300)

we have

U
R(t, t ') =Θ(t - t ')U (t, t ')

( x, t x ', t ' )R =Θ(t - t ') ( x, t x ', t ' ) (1.301)

It is easily checked that, for any a > 0, 
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(1.303)

so that
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where U (t ', t ') = 1 was used.

Taking the matrix elements of (1.303a) and then using (1.297), we get the equation of motion for the 

retarded propagator,
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As can be seen from (1.296), these propagators depend only on the time difference t - t ' if H  is time-

independent.

A retarded function

 f (t) = 0 ∀ t < 0 (1.306a)

has a characteristic Fourier transform
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Consider now the evaluation of the inverse transform
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as the real-axis part of a contour integral in the complex E-plane.

For t < 0, the contour must be closed in the upper-half plane so that contribution from the great arc 

vanishes.  Hence, (1.306a) is automatically satisfied if f
˜
(E) is analytic in the upper-half plane.

Using Θ(t) as an example, we have

Θ
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The single pole in the lower-half plane at E = -i η makes
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       = 1 for t > 0

Note that, the case t = 0 is undefined in (1.308), which is why we define Θ using (1.300).  On the 

other hand, we are free to assign any finite value to Θ(0) without changing the crucial relation 

(1.303).  Kleinert defined 3 different step functions:
Θ(t)

ΘR(t)

Θ(t)

if Θ(0) =

0 see (1.300)
1 see (1.302)
1
2

see (1.309)

As with the δ-function, Θ is properly a distribution and is used safely only inside an integral, e.g., as 

the kernel for a linear functional of smooth test functions:

Θ[f ] =  d tΘ(t - t ') f (t ') (1.310)

A closely related distribution is

ϵ(t) ≡ Θ(t) -Θ(-t) (1.311)

      =
1 for t > 0
0 for t = 0
-1 for t < 0

(1.312)

which is independent of the choice of Θ(0).
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