[.17. Classical and Quantum Statistics

Classical statistics:
For a system of N particles in thermal equilibrium with a thermal reservoir at temperture T, the
probability d  of a phase space element

dr=d*Ngd*Np (1.532)
being occupied is

dPx dre ke (1.533)
where e"'*8T is the Boltzmann factor and

ks =1.3806221 (59) x 10~ "% erg/K (1.534)

is the Boltzmann constant.

In quantum mechanics, each state occupies a phase space volume of size h =2 7t h for each degree
of freedom. The number of states in d 1 is therefore given by
dt d3N q d3Np

RN @ rhy3N

The classical partition function is defined as

Zo(T) = fd reHike T (1.535)
so that (1.533) becomes

dP= 21— dre kel (1.535a)
with ’

fd@: 1 (1.535b)

which is a necessary condition for d # to be a probability.

[.17.1. Canonical Ensemble

The quantum partition function is defined as
ZTy=Tre kT (1.536)
where Tr means taking the trace.
For a time-independent system,
fi=H(%, B)
where x =(x1, ..., x3y) and p=(p1, ..., p3n). Note that Cartesian coordinates are used to avoid any
quantization problem.

The Boltzmann factor is derived by considering an ensemble (or collection) of identical systems with
fixed number of particles in contact with a thermal reservoir . This is referred to as a canonical
ensemble.

-ﬁ// ke T

Owing to the similarity between the Boltzmann factor e ifitn,

we define a quantum partition function as
Zam(ts - ta) = Tr U(ty, t,) =Tre (b= HIn (1.537)
where His time-independent. Hence,

and the evolution operator e~
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Z(T) =ZQM(—i ) =Zam(-ihB) (1.538)
ke T

1
where = —.
ke T

.17.2. Grand-Canonical Ensemble

For a system in contact with both a thermal and a particle reservoir, the corresponding ensemble
and partition function are called grand canonical.

Zo(T, y) = Tre(Ful) [ke T (1.539)
where N is the particle number operator and p is the chemical potential. Furthermore
Fs=H-uN (1.540)

is called the grand canonical Hamiltonian.
The Helmholiz free energy ( or simply, the free energy ) F is defined as
o FlkeT Ty e—ﬁ//ks T_7
so that
F(T)=-kg TInZ(T) (1.541)

Similarly, the grand potential Fg is
-Felke T _ Ty e—I:IG/kBT

e
so that

Fo(T, p)=-kg TInZg(T, p) (1.542)
The internal enery E is just the averge energy given by

A 1 A 7
E=(H) = —Tr(He"H/kBT) (1.543)
Z(T)
In general, the (classical) thermodynamic function corresponding to the quantum operator Ois the
average
~ 1 ~” _F
(0)= —Tr(Oe'”/"B T) (1.543a)
Z(T)

Using

ie—/://kgrz 1 ,'_‘Ie—/:f/kBT
oT kg T?
(1.543) can also be written as
ke T? 0 Z oInz
E=———= =kg T?

- =kg (1.544)
Z oT oT
Using (1.541), we get the thermodynamic relation
, 0 (F 0
E=-T —(—) =(1—T—)F (1.545)
OT\T oT
For the grand canonical ensemble, Z is replaced by Zs so that the average particle number is given
by
N 1 ~ P
N =Ry = Tr( N e/ o T) (1.546)
Zg(T)
Using
0

P T TR P ke T
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we have
ke T 0Z olnZ
R (1.547)
Zs OU ou
Using (1.542), we get the thermodynamic relation
0 Fg
N=-——— (1.548)
ou

Analogous to (1.543),

E=(H) = Tr( fyg~Fie [ ke T) (1.549)

Zg(T)

Using

ie-(f#_uﬂ/)/kgr= 1_(,’:I_Ni\\l)e—/:lg/k57'

oT kg T?
we have

ke T2 8Z oInZ
E-puN=—— =28 g2 —=5
Zs 0T oy
0
:(1 —T—) Fe (1.550)
oT
For a system of N free particles, the number of states up to energy E is
N 2
Pi
N(E) = G(E— —] (1.551)
28\ E~ 2 om

where 6 is the step function.

If the particles are confined within a large box of volume L3, then pi becomes quasi-continuous and

L 3N N 3 Npi2
NE)=|—— d’ p; 6| E- _ 1.552
O-(57) [Menele-3 2] oseo

i=1
The integral in (1.552) is simply the volume Qg3 y of a 3 N-D sphere of radius p = \/ 2ME .

Let Sp be the surface area of a D-D sphere of radius 1. We have

D
SD:Jdeé(r—1) rP=>x
i=1
=Jde26(r2—1)
[aox [T et
-0 JT
Jm ﬂe-/k J'doxeikﬂ
-0 JT
_ Jw %e—ik(jw dxe””z)D
-0 JT —c0
J¢oo dk ik 7T \D/2
(5
- JT —-ik

I e—ik
— T(_1+D/2 J dk
oo (_ik)D/Z

27012
"o (1.557)
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where Gradshteyn & Ryzhik, Formula 3.382.7 was used.

A less involved way to do so is as follows

r} dP x e T+ = P12

) Sp (D
=Sp j drPter = 2 F(—)
0
Solving for Sp then gives (1.557).

The volume of a D-D sphere of radius r is therefore
. 2 70/2 o2
Qp(r)=Sp J drrP'= P = P (1.554)
0 D I(D/2) r(z+1)

(1.552) thus becomes

NE=(>=) " (V2w

2rth
( L )3N (2mTME)3N'2

2mth W§N+ﬂ

(1.553)

The density of states ( per energy ) is therefore

p(E)= —
oE

L \3N (2 TME)3N/Z1

() e —

— : (1.558)
r(zN)

2rth

Given a complete set of states | a),
Tr©=Z<a|6|a> (1.558a)
a

Let | E,) be the eigenstates of I:I, (1.536) becomes

Z(T)=Z<En o HlksT | En> =Ze—En/kBT
n n

= [ dEp(E)eElkeT (1.558b)

where
p(E)= ) 8(E - Ey) (1.558¢)

is just another expression of the density of states defined in (1.558).
Following (1.533), we expect
N o jdEp(E) e E/keT (1.558d)

For large N, p(E) and e E/% T increases and decreases sharply, respectively, as E increases. This

means p(E) e £'%¢ T is sharply peaked. For free particles,
D(E) e EMeT o E3NIZA ooEllks T

3 E
zexp( —NInE- —) (1.559)
2 kg T
0 3N 1 3 E
- —(p(E)e‘E”‘BT)cx(———)exp(—NInE——)
0E 2E kgT 2 kg T

The maximum of p(E) e £/ T is therefore at
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3
E(T) = ENkBT (1.560)

The width of the peak is found by expanding (1.559) in 6 E = E - E(T). Using

S5E
IN[E(T) + 6E]=InE(T) In[1 + E(T)]

6E 1 (6E)?

=InE(T) + - + ...
E(T) 2 E(T)?

(1.559) becomes

6E _1_@+ ]_E(T)+6E}
E(T) 2 E(Ty ks T

EM §N(6E)2
keT 4 E(T)?

exp{gN[lnE(Th

=exp(§NInE(T) - +...)(1.561)

p(E) e E'* T is therefore a Gaussian in the variable & E with standard deviation

g2 _ (1.561a)

\J3N/2

Since N is large, we can replace the Gaussian with a é-function so that
p(E)e E'keT = N(T) O] E- E(T)] e E(D/ke T (1.562)
where N(T) is some proportionality constant.
According to (1.558a),
N = N(T) e—E(T)/kB T
so that N(T) = N is roughly the number of states over which the N particles are distributed at tempera-
ture T. This allows the definition of the entropy as
S(T) =kgIn N(T) (1.563)
where the proportionality constant is named kg as a tribute to Boltzmann.
Using (1.563) to write (1.562) as

p(E)eElkeT = SMNTke 5| E _ E(T)] e E(N/ke T (1.563a)
(1.563b) then becomes

Z(T) = e LED-TSM/ke T (1.564)
Comparing with (1.541) gives the familiar thermodynamic relation

FT)=E(T)-T S(T) (1.565)
Comparison with (1.545) gives

o K(T)
S(T)y=-—— (1.566)
oT

For grand-canonical ensembles, (1.558b) is replaced by

Zo(T, u) = dedn p(E, n) e (E-HM/ke T (1.567)
where

p(E, nye (E-kmiks T (1.568)

now strongly peaks at E=E(T, y) and n= N(T, ).

The analog of (1.563a) can be written down by inspection:
p(E, nye EHMIkeT = §[E—E(T)] 8[n-N(T, 1) (1.569)
x @3N/ ks g[E(T, 1)~ uN(T, 1)1/ ke T
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(1.567) then gives
Zs(T, p) = e LE(T, 1) = N(T, ) =T S(T, )]/ ke T (1.570)

(1.542) thus becomes another well-known thermodynamic relation
Fe(T, p)=E(T, p) = uN(T, p) - T S(T, p) (1.571)

Comparison with (1.550) gives

S(T, p) = -aF:(# (1.572)

For completeness, we rewrite (1.548) as

N(T, py= 22 B FZ(;’ ¥

Consider a system of volume V. In the canonical ensemble, the independent thermodynamic
variables are (T, N, V). In the grand canonical ensemble, they are (T, u, V). In dealing with
relations between thermodynamic functions, we should therefore write F(T, N, V) and Fg(T, u, V).

(1.572a)

Since a thermodynamic potential such as Fg is necessarily extensive, it can be written as
Fe=fV (1.572b)
where f is an intensive variable. Hence,
0 Fc

eV

f

0 F
On the other hand, —° is the intensive variable conjugate to V. Indeed,
oV

0 Fg
—=- (1.572c)
oV

where p is the pressure.

Therefore, (1.572b) becomes another well-known relation

Fe=-pV (1.573)

Combining egs (1.572 a,b,c), we have
dFe(T, u, V)==-SdT-Ndu-pdV (1.574)

Inserting (1.573) into (1.571) gives the Euler’s equation,
E=TS+uN-pV (1.575)

(1.566) indicates that E is the Legendre transform of F,
0F

E(S,N,V)=KT,N, V)-T —
oT
=F+ST
(1.575) becomes
F=uN-pV (1.576)



