
3.3.  The Spectrum of the O(2) Symmetric Rigid Rotator

The (dimensionless) hamiltonian for an O(2) rigid rotator is

H = -
1

2

∂2

∂ θ2
(3.28)

Hψ = -
1

2

∂2ψ

∂ θ2
=Eψ

→ ψ = cℓ e
i ℓ θ

with Eℓ =
1

2
ℓ2 (3.29)

ψ is single-valued, i.e.,
ψ(θ + 2π n) =ψ(θ) ∀ n ∈ℤ  (integers)
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i.e., the spectrum is discrete.
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is the angular momentum, the Lagrangian is
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The imaginary time action is
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Matrix elements of the evolution operator e-β H are
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The Euler-Lagrange eq. is
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Since the points { θ + 2π n n ∈ℤ }  are all equivalent to the point θ, in going from θ ' to θ '', one can 

taking an infinite number of distinct paths that goes from  θ ' to θ '' + 2π n.

For the classical paths that satisfy eq(3.30a), we have
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These paths are topologically distinct since they cannot be continuously deformed into each other 



without leaving the manifold of motion (a circle for our rotator).

As usual, we set
θ(t) = θc(t) + u(t) (3.32)

with
u(β) = u(0) = 0

Hence,
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Hence,
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[see eq(2.66b & 2.68)]

Since  θ '' e
-β H θ '  is a periodic function of θ '' - θ ', it has a Fourier series expansion
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