
5.1.  Quantum Mechanics:  Holomorphic Formalism

Consider the harmonic oscillator
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2
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2
+
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2
ω2
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2
(5.1)

with  q , p  = i ℏ

Let

p - iω q = -i 2 ℏ ω a p + iω q = i 2 ℏ ω a+ (5.2)

→  a, a+  =
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2 ℏ ω
 p - iω q , p + iω q 

 =
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2 ℏ
  p, q  -  q , p  

 = 1 (5.2a)
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Here after, we shall assume
H0 = ℏ ω a+ a (5.3)

which should be interpreted as any system with equally spaced energies
En = n ℏ ω n = 0, 1, 2, ...

Let ℱ  be the complex vector space of all complex functions.


∂

∂ 
,   f =

∂

∂ 
( f ) - 

∂

∂ 
f  = f ∀ f ϵ ℱ

→ 
∂

∂ 
,   = 1   (5.2b)    

The natural basis of ℱ  is the set of monomials  n m , where  is the complex conjugate of .

An analytic function f  is defined to be a function that has a Taylor series of .
In other words,

 f = f () = 

n = 0

∞

fn 
n (5.2c)

The set of all analytic functions forms a vector space  with the natural basis  n .

Note:  a holomorphic function is defined as a function that is complex differentiable ( & hence infinitely 
differentiable ) in the neighborhood of every point in its domain.   Thus, it’s also an analytic function. 

Operating on , we have, by eqs(5.2a & 5.2b),

a ↦
∂

∂ 
a+ ↦  (5.4)

which is called the analytic ( or holomorphic ) representation.

Eq(5.3) then becomes



H0 = ℏ ω
∂

∂ 
(5.5)

Using


∂

∂ 
n = nn

we see that the Schrodinger equation
H0 ψn = En ψn

has solutions
ψn = c 

n
En = n ℏ ω (5.5a)

The (imaginary time) evolution operator is

U0(t) = exp -
1

ℏ
H0 t (5.6a)

By eq(5.5a), we have
U0(t)

n = exp( -nω t )n 

 =  e-ω t  
n

→ U0(t) f () = f  e
-ω t   (5.6)

Hilbert Space of Analytic Functions

By endowing to  an inner product

( g, f ) =
d  d 

2π i
e
-  

g() f () (5.7)

we turn it into a Hilbert space ℋ.

The vector space  spanned by the basis {n } is called the dual space of .

 m, n =
d  d 

2π i
e
-   m n

  =
∂m

∂ am

∂n

∂ an
e
- a a

a = a =0

[ Eq(1.29) of §1.3 used ]

  = (-)n
∂m

∂ am
an e- a a

a = a =0

Since we need to set a = 0 after the derivatives are done, the only surviving term must have no prefac-
tor a.   Using

∂m

∂ am
a
n =

n !

(n -m) !
a
n-m

we have
 m, n = n ! δmn (5.8)

i.e., the basis  n  is orthogonal.

Alternatively, using [see eq(a) of §1.3]


d  d 

2 i
= d x d y =

0

2π

d θ
0

∞

r d r (  = x + i y,    = x - i y)

we have
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 m, n =
1

π


0

2π

d θ
0

∞

r d r e
- r 2

r
m+n

e
i (n-m) θ

  = 2δmn 
0

∞

d r e
- r 2

r
2 n+1

  = n ! δmn
as before.

For m = n = 0, we have


d  d 

2π i
e
-   = 1 (5.8a)

Eq(5.7) also implies the completeness relation


d  d 

2π i
e
-    〉 〈  = I (5.8b)

so that
( g, f ) = 〈 g f 〉

         =
d  d 

2π i
e
-  〈 g  〉 〈  f 〉

         =
d  d 

2π i
e
-  

g() f ()

We’ll call this the -representation since the basis is {  〉 }.

By definition, a member f  of ℋ must have a finite norm || f || = ( f , f )12.

Using eq(5.2c), we see that ∀ f ϵ ℋ,

|| f ||2 = ( f , f )

         = 
n,m

fm fn  
m, n

         = 

n = 0

∞

fn
2
n !

must be finite ( or square integrable ).   Since fn =
1

n !

dn f

d n  = 0

, this means f  is holomorphic every-

where, i.e., f  is entire.

Using eq(5.8), we have


d  d 

2π i
e
-  

f () = 

n = 0

∞

fn 
d  d 

2π i
e
-   n

        = 

n = 0

∞

fn  
0, n

        = f0 = f (0)

Thus,


d 

2π i
e
-   = δ() [ c.f. δ(x) =

d k

2π
e
i k x ]

so that
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d  d 

2π i
e
-  

f () = d δ() f () = f (0) (5.9)

Operator Kernels

Since every member of  has a Taylor expansion,  〈  n 〉 =
n

n !
 is a orthonormal basis for ℋ.  

The completeness of the basis:


n

n 〉 〈 n = I (5.9a)

gives


n

〈  n 〉 〈 n  ' 〉 = 〈   ' 〉 (5.9b)

so that



n = 0

∞ n

n !

 ' n

n !
= 

n = 0

∞ ( ')n

n !
= e ' = 〈   ' 〉

In fact, with

〈  n 〉 =
n

n !

the above procedure leads in general to

〈 α β 〉 = eα β where  α, β =  ,  ' ,  or  ' (5.9c)

Using the completeness eq(5.8b), we have
f ( ') = 〈  ' f 〉

       =
d  d 

2π i
e
-   〈  '  〉 〈  f 〉

       =
d  d 

2π i
e
-  

e
'  〈  f 〉

       =
d  d 

2π i
e
- ( -' ) 

f () (5.10)

which implies


d 

2π i
e
- ( -' )  = δ( -  ') (5.10a)

of which eq(5.9) is a special case for  ' = 0.

An operator is in the normal order if all the creation operators a+’s are on the left of all the annihilation 
operators a’s.  E.g.,

a
+m
a
n ↦ m

∂n

∂ n

is in normal order.  For an arbitrary normal operator  , we have

 ,
∂

∂ 
= 
n,m

nm m
∂n

∂ n

Notation:
  = generic operator.
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  = generic normal ordered  operator.
  [] = normal ordered version of  

Using
∂n

∂ n
e
  ' =  ' n e  '

we have

 ,
∂

∂ 
e
  ' = 

n,m

nm m
∂n

∂ n
e
  ' = 

n,m

nm m  ' n e  '

=(,  ' ) e  ' (5.11)

= ,
∂

∂ 
〈   ' 〉 [ Eq(5.9c) used ]

= 〈    ' 〉 (5.11p)

Caution: Zinn-Justin denoted eq(5.11p) as  〈    ' 〉 [ see eq(5.11) in his text ].

   All subsequent eqs that bear this difference will be marked with a “p”.    

Consequently, all matrix elements of the form 〈    ' 〉 in Zinn-Justin's text will be replaced by 

〈    ' 〉.

Eq(5.10) gives

 ,
∂

∂ 
f () = ,

∂

∂ 

d  ' d  '

2π i
e
- ('- )  '

f ( ')

Using eq(5.11), we have

( f ) () =
d  ' d  '

2π i
,  ' e- ('- )  '

f ( ')

Using completeness eq(5.8b), we have

〈  ' 2 1  '' 〉 =
d  d 

2π i
e
-   〈  ' 2  〉 〈  1  '' 〉 (5.12p)

Similarly,

tr  =
n

〈 n  n 〉 with   
n

n 〉 〈 n = 1

      =
n


d  d 

2π i
e
-  


d  ' d  '

2π i
e
- '  ' 〈 n  〉 〈    ' 〉 〈  ' n 〉

      =
d  d 

2π i
e
-  


d  ' d  '

2π i
e
- '  ' 〈    ' 〉 〈  '  〉

      =
d  d 

2π i
e
-  


d  ' d  '

2π i
e
- '  ' 〈    ' 〉 e'  [ Eq(5. 9c) used ]

      =
d  ' d  '

2π i
e
- '  ' 〈  '   ' 〉 [ Eq(5.10) used ] (5.13p)

tr  =
d  d 

2π i
 (, ) [ Eq(5.11) used ] (5.13)

Since H0 is normal ordered, we can use eq(5.11p) to write
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〈  H0  ' 〉 =H0 (,  ') e  '

         = ℏ ω ' e  ' (5.14p)

Bearing in mind that U0 is not normal ordered, we have

〈  U0(t)  ' 〉 =   exp -
1

ℏ
H0 t  '  [ Eq(5.6a) used ]

            = exp -
1

ℏ
H0 t e

  '

            = 

n = 0

∞ (-ω t )n

n !


∂

∂ 

n

e
  '

Let

P = 
∂

∂ 
ρ =  '

then
P ρn = nρn P

m ρn = nm ρn

Hence

〈  U0(t)  ' 〉 = 

n = 0

∞ (-ω t )n

n !
P
n 

m = 0

∞ ρm

m !

 = 

n ,m = 0

∞ (-ω t )n

n !m !
m
n ρm

 = 

m = 0

∞ e-mω t

m !
ρm

 = exp e-ω t ρ

 = exp e-ω t  ' (5.14p)

The corresponding partition function is
0(β) = trU0(ℏ β)

          =
d  d 

2π i
e
-   〈  U0  〉 [ Eq(5.13p) used ]

          =
d  d 

2π i
exp -1 - e-β ℏω     [ Eq(5.14p) used ]

Using
d  d 

2 i
= d x d y = r d r d θ &  = r2

we have

0(β) =
1

π


0

∞

r d r 
0

2π

d θ exp- 1 - e-β ℏω  r2 

         =
0

∞

d x exp -1 - e-β ℏω  x 

         =
1

1 - e-β ℏω
(5.15)
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Remarks

(i) From eqs(5.11 & 5.11p), we have

〈    ' 〉 =  ,
∂

∂ 
e
  ' (a)

→ 〈    ' 〉 =   ' +   

       = +  ',
∂

∂  '
e
'    [ Eq(a) used ]

       =  ,
∂

∂ 
e
 ' [ Eq(a) used ]

∴ +  ',
∂

∂  '
=  ,

∂

∂ 

For a normal operator, 
∂

∂ 
 in eq(a) can be replaced by , so that

+ ( ', ) = (,  ')

For a hermitian operator

  ',
∂

∂  '
=  ,

∂

∂ 

In particular, setting  ' =  to obtain the diagonal elements, we have

 ,
∂

∂ 
=  ,

∂

∂ 

Therefore, if   is hermitian, then

 ( ', ) = (,  ')
& in particular,  (, ) must be real.

Since H0 is normal ordered & using eq(5.14p), we have
H0 (,  ') = ℏ ω '

→ H0( ', ) = ℏ ω ' 

H0 (,  ') = ℏ ω ' =H0( ', )
∴ H0 is hermitian.

Using eq(5.14p),we see that U0 is also hermitian.

(ii) Using [ see eq(5.10d) ]

I =
d  d 

2π i
e
-    〉 〈  & 

n

n 〉 〈 n = I

we have

 = 
m, n

m 〉 〈m O n 〉 〈 n

   = 
m, n

 
d  d 

2π i
e
-  


d  ' d  '

2π i
e
- ' '  〉 〈  m 〉 〈m O n 〉 〈 n  ' 〉 〈  '
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   = 
m, n

 
d  d 

2π i
e
-  


d  ' d  '

2π i
e
- ' '  〉

m

m !
mn

 ' n

n !
〈  '

   = 
d  d 

2π i

d  ' d  '

2π i
e
-  - ' '  〉 〈  '  

m, n

mn
m

m !

 ' n

n !

where
mn = 〈m O n 〉

Thus, the operator  is characterized by the kernel

 
m, n

mn
m

m !

 ' n

n !

Remark (iii) is irrelevant to our version of derivation.
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