6.6.a. SUSY Quantum Mechanics

Introduction to SUSY QM

Ref: F.Cooper et al, "Supersymmetry in Quantum Mechanics", Chap.3.

Consider the 1-D Hamiltonian

$$H = \frac{p^2}{2m} + V(x)$$

If *V* is bounded below, we can set the ground state energy $E_0 = 0$ so that the Schrodinger eq. for the ground state ψ_0 becomes

$$H \psi_0 = \left(-\frac{\hbar^2}{2 m} \frac{d^2}{d x^2} + V \right) \psi_0 = 0$$

$$V = \frac{\hbar^2}{2 m} \frac{d^2 \psi_0}{\psi_0 d x^2}$$

i.e., if ψ_0 is known, one can contruct a V that gives rise to it.

We wish to write

$$H = A^{\dagger} A$$

where

$$A = i \frac{p}{\sqrt{2 m}} + W(x) \qquad A^{+} = -i \frac{p}{\sqrt{2 m}} + W(x)$$

Thus

$$H = \left(-i\frac{p}{\sqrt{2m}} + W\right) \left(i\frac{p}{\sqrt{2m}} + W\right)$$
$$= \frac{p^2}{2m} + W^2 - \frac{i}{\sqrt{2m}} (pW - Wp)$$
$$= \frac{p^2}{2m} + W^2 - \frac{\hbar}{\sqrt{2m}} \frac{dW}{dx}$$
$$V = W^2 - \frac{\hbar}{\sqrt{2m}} \frac{dW}{dx}$$

The solution to this is

$$W = -\frac{\hbar}{\sqrt{2m}} \frac{d \psi_0}{\psi_0 d x}$$

Proof:

$$W^{2} = \frac{\hbar^{2}}{2 m} \left(\frac{d \psi_{0}}{\psi_{0} d x} \right)^{2}$$

$$- \frac{\hbar}{\sqrt{2 m}} \frac{d W}{d x} = \frac{\hbar^{2}}{2 m} \left(\frac{d^{2} \psi_{0}}{\psi_{0} d x^{2}} - \left(\frac{d \psi_{0}}{\psi_{0} d x} \right)^{2} \right)$$

$$W^{2} - \frac{\hbar}{\sqrt{2 m}} \frac{d W}{d x} = \frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{0}}{\psi_{0} d x^{2}} = V$$

By the switching $A \leftrightarrow A^+$, we obtain the supersymmetric partners of H & V,

$$H' = A A^{+} = \frac{p^{2}}{2 m} + V'(x)$$

$$V' = W^{2} + \frac{i}{\sqrt{2 m}} (p W - W p)$$

$$= W^{2} + \frac{\hbar}{\sqrt{2 m}} \frac{d W}{d x}$$

$$= 2 W^{2} - V$$

 $V + V' = 2 W^2$

Let $\psi_n \& \psi'_n$ be the n^{th} eigenstates, with eigenvalues $E_n \& E'_n$, of H & H', respectively.

$$H \psi_n = A^+ A \psi_n = E_n \psi_n$$

A × both sides gives

$$AA^{+}A\psi_{n} = H'(A\psi_{n}) = E_{n}(A\psi_{n})$$

 $A \psi_n$ is an eigenstate of H' with eigenvalue E_n .

However, for n = 0,

$$E_0 = 0$$

$$\rightarrow$$
 $A \psi_0 = 0$

so that the eigenstates of H' start with $A \psi_1$, i.e.,

$$\psi'_0 \propto A \psi_1$$

&
$$E'_0 = E$$

$$\rightarrow \qquad \psi'_n \propto A \psi_{n+1}$$

$$\psi'_{0} \propto A \psi_{1}$$
 & $E'_{0} = E_{1}$
 $\psi'_{n} \propto A \psi_{n+1}$ & $E'_{n} = E_{n+1}$

$$\forall n = 0, 1, 2, ...$$

Conversely,

$$A^{+}H'\psi'_{n} = A^{+}AA^{+}\psi'_{n} = H(A^{+}\psi'_{n}) = E'_{n}(A^{+}\psi'_{n})$$

 $A^+ \psi'_n$ is an eigenstate of H with eigenvalue E'_n .

Since we already established $E'_n = E_{n+1}$

$$\therefore \qquad \psi_{n+1} \propto A^+ \psi'_n$$

$$\forall n = 0, 1, 2, ...$$

which means ψ_0 has no super-partner.

Thus, the solutions to a rather difficult eigen-problem

$$H' \psi' = E' \psi'$$

can be obtained with ease if its superpartner problem

$$H \psi = E \psi$$

are easily solvable. In which case,

$$\psi'_n \propto A \psi_{n+1}$$

$$E'_{n} = E_{n+1}$$

See Cooper for examples of such applications.

We now normalize the eigenstates. Let

$$\psi_{n+1} = c A^{+} \psi'_{n} \rightarrow \psi_{n+1}^{+} = c^{*} \psi'_{n}^{+} A$$

$$\langle \psi_{n+1} \mid \psi_{n+1} \rangle = c^{*} c \langle \psi'_{n} \mid A A^{+} \mid \psi'_{n} \rangle = c^{*} c E'_{n} \langle \psi'_{n} \mid \psi'_{n} \rangle$$

$$= c^{*} c E_{n+1} \langle \psi'_{n} \mid \psi'_{n} \rangle$$

$$\therefore \qquad \psi_{n+1} = \frac{1}{\sqrt{E_{n+1}}} \, A^+ \, \psi'_n \, = \frac{1}{\sqrt{E'_n}} \, A^+ \, \psi'_n$$

are all normalized if the ψ'_n are.

Thus,

$$A\psi_{n+1} = \frac{1}{\sqrt{E_{n+1}}} AA^+ \psi'_n$$

Setting $\psi'_n = c' A \psi_{n+1}$

$$\Rightarrow \frac{1}{c'} \psi'_{n} = \frac{1}{\sqrt{E_{n+1}}} E'_{n} \psi'_{n} = \sqrt{E_{n+1}} \psi'_{n}$$

$$\therefore c' = \frac{1}{\sqrt{E_{n+1}}} = \frac{1}{\sqrt{E'_n}}$$

& the normalized superstates are

$$\psi'_{n} = \frac{1}{\sqrt{E'_{n}}} A \psi_{n+1} = \frac{1}{\sqrt{E_{n+1}}} A \psi_{n+1}$$

SUSY Hamiltonian

The two spectra can be combined into a SUSY Hamiltonian

$$\mathcal{H} = \begin{pmatrix} H & 0 \\ 0 & H' \end{pmatrix} = \begin{pmatrix} A^+ A & 0 \\ 0 & A A^+ \end{pmatrix}$$

with 2 kinds of eigenstates

$$\Psi_n = \begin{pmatrix} \Psi_n \\ 0 \end{pmatrix} \qquad \qquad \& \qquad \qquad \Psi'_n = \begin{pmatrix} 0 \\ \psi'_n \end{pmatrix}$$

and degenerate energies

$$E'_{n} = E_{n+1}$$

The cross over of states can be effected by the operators

$$Q = \begin{pmatrix} 0 & 0 \\ A & 0 \end{pmatrix} \qquad \qquad & \qquad \qquad Q^+ = \begin{pmatrix} 0 & A^+ \\ 0 & 0 \end{pmatrix}$$

$$Q^+ = \begin{pmatrix} 0 & A^+ \\ 0 & 0 \end{pmatrix}$$

For example,

$$\psi_{n+1} = \frac{1}{\sqrt{E'_n}} A^+ \psi'_n$$

now becomes

$$\Psi_{n+1} = \frac{1}{\sqrt{E'_n}} \, Q^+ \, \Psi'_n$$

the validity of which is easily checked.

Note that

$$Q^{2} = \begin{pmatrix} 0 & 0 \\ A & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ A & 0 \end{pmatrix} = 0 \qquad \qquad & \qquad \qquad Q^{+2} = \begin{pmatrix} 0 & A^{+} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & A^{+} \\ 0 & 0 \end{pmatrix} = 0$$

$$\{Q, Q\} = 0 \qquad \qquad & \qquad \qquad \{Q^{+}, Q^{+}\} = 0$$

Thus, Q or Q^+ anti-commutes with itself, so we may call them Fermion operators.

Calling the space spanned by $\Psi_n(\Psi_n)$ the bosonic (fermionic) sector, Q & Q⁺ thus performs the transmutation between bosons & fermions, hence the name SUper-SYmmetry (SUSY).

Also.

$$Q Q^{+} = \begin{pmatrix} 0 & 0 \\ A & 0 \end{pmatrix} \begin{pmatrix} 0 & A^{+} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & A A^{+} \end{pmatrix}$$

$$Q^{+} Q = \begin{pmatrix} 0 & A^{+} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ A & 0 \end{pmatrix} = \begin{pmatrix} A^{+} A & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Rightarrow \qquad \{Q, Q^{+}\} = \mathcal{H}$$

&
$$Q\mathcal{H} = \begin{pmatrix} 0 & 0 \\ A & 0 \end{pmatrix} \begin{pmatrix} A^{+}A & 0 \\ 0 & AA^{+} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ AA^{+}A & 0 \end{pmatrix}$$
$$\mathcal{H} Q = \begin{pmatrix} A^{+}A & 0 \\ 0 & AA^{+} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ A & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ AA^{+}A & 0 \end{pmatrix}$$

$$\rightarrow$$
 [Q, \mathcal{H}]=0

Using $\{Q, Q^+, \mathcal{H}, I\}$ as basis, together with the anti- & commutation rules,

$$\{Q, Q\} = 0$$
 $\{Q^+, Q^+\} = 0$ $\{Q, Q^+\} = \mathcal{H}$ $[Q, \mathcal{H}] = 0$

one can construct a closed algebra classified as sl(1/1), where sl stands for superlinear & 1/1 means that the irreducible representation that defines the algebra are block matrices of dimensions $(1+1)\times(1+1)$.

The general Pauli Hamiltonian:

$$H_{Q} = c^{2} Q^{2} = c^{2} \begin{pmatrix} A^{+} A & 0 \\ 0 & A A^{+} \end{pmatrix} \equiv \begin{pmatrix} H^{\uparrow} & 0 \\ 0 & H^{\downarrow} \end{pmatrix}$$

is a super-hamiltonian.

The energy degeneracy discussed in 6.6._DiracElectronsInMagneticField.pdf can therefore be understood in terms of SUSY.