
8.1.  Spin & Statistics

Ref:  A.Khare,”Fractional Statistics & Quantum Theory”, 1997, Chap.2.

Anyons = Particles obeying fractional statistics.

Particle statistics is determined by the phase factor ei α picked up by the wave function under the 
interchange of the positions of any pair of (identical) particles in the system.

Before the discovery of the anyons, this particle interchange (or exchange) was treated as the 
permutation of particle labels.   Let P be the operator for this interchange.

P
2 = I → e

2 i α = 1

∴ e
i α = ±1 i.e., α = 0, π

Thus, there’re only 2 kinds of statistics, α = 0 (π ) for Bosons (Fermions) obeying Bose-Einstein 
(Fermi-Dirac) statistics.

Pauli’s spin-statistics theorem then relates particle spin with statistics, namely, bosons (fermions) 
are particles with integer (half-integer) spin.

To account for the anyons, particle exchange is re-defined as an observable adiabatic (constant 
energy) process of physically interchanging particles.  ( This is in line with the quantum philosophy 
that only observables are physically relevant. )

As will be shown later, the new definition does not affect statistics in 3-D space.  However, for 
particles in 2-D space, α can be any (real) value; hence anyons.

The converse of the spin-statistic theorem then implies arbitrary spin for 2-D particles.

Quantization of S in 3-D

See M.Alonso, H.Valk, “Quantum Mechanics: Principles & Applications”, 1973, §6.2.

In 3-D, the (spin) angular momentum S has 3 non-commuting components satisfying

Si, Sj  = i ℏ εi j k Sk

& S2, Si = 0

This means a state can be the simultaneous eigenstate of S2 & at most one Si.  The common 

practice is to choose S2 &S3 so that

S
2 ηm  = η ℏ2 ηm  S3 ηm 〉 =m ℏ ηm 〉

where η &m are the respective (dimensionless) eigenvalues.

Define the ladder operators
S± =S1 ± i S2

With a bit of tedious but straightforward calculation, we have

S± S∓ =S1
2 +S2

2 ± ℏ S3

         =S2 -S3(S3 ∓ℏ )

S
2 =

1

2
(S+ S- +S- S+) +S3

2

& S2, S±  = 0

[S3, S± ] = ±ℏ S±

[S±, S∓ ] = ±2 ℏ S3

Now,
[S3, S± ] = ±ℏ S± → S3 S± =S±(S3 ± ℏ)

∴ S3 S± ηm 〉 = (m ± 1) ℏ S± ηm 〉



i.e., S± ηm 〉 =α± ηm ± 1 〉 ( α± = constant )

Thus, S± raises/lower m by 1.
Since the value of S3 must be finite, we have

S+ ηmmax 〉 = 0 S- ηmmin 〉 = 0

→ S- S+ ηmmax 〉 = 0 S+ S- ηmmin 〉 = 0

S2 -S3(S3 + ℏ ) ηmmax  = 0 S2 -S3(S3 -ℏ ) ηmmin  = 0

∴ η -mmax(mmax + 1) = 0 η -mmin(mmin - 1) = 0
→ mmax(mmax + 1) =mmin(mmin - 1)

(mmax +mmin) (mmax -mmin + 1) = 0
i.e., mmax = -mmin or mmax =mmin - 1

Since mmax ≥mmin, we can only have
mmax = -mmin

Starting from m =mmin, we can use S+ for mmax -mmin = 2mmax times to reach mmax.  Thus, 2mmax 
must be an integer.  By convention, the spin s of the particle is given by s =mmax.   Hence

s =
1

2
n with n = 0, 1, 2, ...

i.e., s = 0,
1

2
, 1,

3

2
, ....

Thus,
η = s(s + 1) 

but it’s conventional to denote the eigenstates as sm 〉 so that

S
2
sm  = s(s + 1) ℏ2

sm  S3 sm 〉 =m ℏ sm 〉

Any S in 2-D

In 2-D, S has only 1 component, say, S =S3 z
.  

Since

S2, S3 = S3
2, S3 = 0

The simultaneous eigenstates require only one label

S
2
m  =m2 ℏ2

m  S3 m 〉 =m ℏ m 〉

The finiteness of m , i.e.,
s ≥m ≥ -s

brings in no restriction on the possible values of s, as advertised.

Particle Exchange

See Khare, §2.3.

Let the configuration space of 1 particle be .  If the particles are identical (i.e., they have the same 
physical attributes such as mass, charge, etc.) but distinguishable (i.e., we can tell which is which 

after they collide), the configuration space of N particles is simply the direct product space N. 

However, if the particles are indistinguishable (as do all identical particles in quantum mechanics), 

the set of all points in  N that are related by particle exchanges must be treated as a single point.  

Thus, the configuration space becomes N N, where N is the group for permutating N objects.

For example, the Gibbs paradox in classical statistical mechanics was resolved by shrinking the 

volume of N by a factor of (N !)-1.

The easiest way to study the effect of particle exchange is in terms of relative coordinates  
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ri j = ri - r j so that the exchange i ↔ j simply means ri j → r j i = -ri j.

However, each point ri j = 0 represents a singularity since one cannot determine whether the parti-

cles were exchanged or not because ri j = 0 = -0 = r j i.  The accessible configuration space must 

therefore exclude these singularities.

Mathematically, this can be denoted by writing

N N =Rd⊗r (d, N)

where d is the spatial dimension of the system, Rd the Euclidean space for the center of mass 
motion, & r (d, N) is the d(N - 1)-D, exchange-identified, singularities excluded, configuration space 
in relative coordinates. 

The effects of particle exchange can then be classified according to the topologically distinct closed 

paths on r (d, N).  Which means the phase factor ei α is just the 1-D representation of the fundamen-
tal homotopy group

 π1[r (d, N)] =π1
N N [ π1R

d = 0 ]

Example: N = 2, d = 3

For N = 2, we have

r (d, 2) =
Rd - {0}

2

= (0, ∞)⊗RPd-1

where (0, ∞) is the positive real line with the origin omitted,  & RPd-1 is the real projective space 

obtained from Rd - {0}  by 1st making every point r  equivalent to r & then identifying every r with -r.

For d = 3, RPd-1 = RP2 is the unit sphere S2 with the points at both ends of each diameter identified.  
Thus, r (3, 2) is the solid sphere of infinite radius minus the center.  However, in considering the 
effects of exchange, all closed paths can be continuously contracted to one on a sphere of radius 

ri j , which in turn is equivalent to S2.

We shall begin by considering the closed paths shown in the figure.

For path A in fig.(a), the particle starting at any r = r0 simply returns to r0.  Since r  is never near -r0, 

there is no exchange.  The defining topological characteristic of path A is that it can be shrinked 
continuously to a point. 

Path B in fig.(b) starts at a point r0 on one end of a diameter & ends up at point -r0 on the other end 
of the diameter.  Thus, there is a single exchange.  We can call the path a “loop” because the 
starting & ending points are identified. 

Note that path  B cannot be shrinked continuously to a point since, in order to remain a loop, its end 
points must be at the opposite ends of a diameter.  This is also the defining topological characteris-
tic of α =π  loops.

For path C in fig.(c), the particle starts at one end of a diameter, reaches the other end, then returns 
to the starting point.  Thus, there are two exchanges.  However, can be shrinked continuously to a 

point so that it is topologically equivalent to  path A.
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Further considerations easily show that there are only two types, A &B, of topologically distinct 
closed paths.

In terms of homotopy theory, 

π1RP2 =2

There are only two 1-D (irreducible) representations in 2 given by
2 e (12)

ΓS

ΓA

1 1

1 -1

where, for our purposes,

 e = even number of exchanges ( transport along type A paths )

 (12) = odd number of exchanges ( transport along type B paths )

Obviously, ΓS gives ei α for bosons & ΓA fermions.

Example: N = 2, d = 2

For d = 2, RPd-1 = RP1 is the unit circle S1 with the points at θ & θ +π  identified.
This can be done by cutting the circle & wrap it up so that the point opposite the cut point is brought 
adjacent to it (see fig.a ).

  fig.a

The outer circle S1 is cut & winded up to get the inner figure RP1 so that every point on the red arc 
is now adjacent to its counterpart on the blue arc.  

Note winding once (Δθ = 2π ) on RP1 corresponds to going half-way on S1 with Δθ =π .

Thus, r (2, 2) is a disk of infinite radius minus the center & with every point (r , θ) & (r , θ +π ) identi-
fied.   Repeating the above folding action, we see that  r (2, 2) is a cone of half-angle 30∘, infinite 
height, & minus its tip, as shown in fig.b.

fig.b

Analogous to the d = 3 case, we need only consider closed paths on S1 with the points at θ & θ +π  
identified.

The fundamental group is

π1RP1 =ℤ

There are countably infinite number of 1-D representations for ℤ.
ℤ ... -2 -1 0 1 2 ... m ...

Γ0

Γ1

Γ-1

⋮

Γn

... 1 1 1 1 1 ... 1 ...

... e-2 i π e-i π 1 ei π e2 i π ... e i mπ ...

... e2 i π ei π 1 e-i π e-2 i π ... e- i mπ ...

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

e-2 i π / n e-i π /n 1 ei π /n e2 i π / n e i mπ /n
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where, for our purposes,

 m = number of windings on RP1 
m = number of exchanges

Winding is signed since the particles cannot go pass each other.

Thus α can be any rational number.

General Case

We quote without proof that (see Khare)

π1
N N =

BN for d = 2

N for d ≥ 3

where BN is the braid group of N objects.
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