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8.C.1. Homogeneous Functions

Let

     , , ,r sg T g T g t B B B

where C

C

T T
t

T


 and the subscripts r and s stand for the regular and singular parts,

respectively.  Assuming sg scales, we have
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Widom scaling:  all other critical exponents can be expressed in terms of p and q.
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8.C.2. Widom Scaling
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8.C.3. Kadanoff Scaling

Consider the d-dim nearest neighbor (n.n.) Ising model

 
,

i j i
i j i

H s K s s B s    (1)
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 n.n., the sum
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2
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8.D.1. Renormalization Group

Ref: T.Niemeijer, J.M.J.van Leeuwen, in "Phase Transitions & Critical

Phenomena", Vol.6, ed. C.Domb, M.S.Green (76)

The most general form of the (effective) spin hamiltonian is
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8.D.2. Exercise 8.1: Triangular Lattice
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Note that the last equality is valid for all block orientations.
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Thus, both eigenvalues are relevant.  (They also remain unchanged for 0B  .)
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These are to be compared with the exact solutions

0exact  and 15exact 

which implies
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exact  and   2.80B exact

 

Thus,  is quite good but B is badly off.
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