6.C.1. Examples

(@) One Free Particle on Line of Length L

The phase space is 2-D. “Surface” of constant energy E is composed of two line segments of
length L at p= i\/ 2mE , where mis the mass of the particle.

If we erect an impenetrable wall on each end of the line so that p reverses sign at them, the system
is ergodic.

If we impose a periodic boundary condition so that the line closes on itself and becomes a circle, p
remains unchanged indefinitely. The system is therefore non-ergodic. This is also the case for
impenetrable boundaries if L = co.

Boundary conditions are therefore crucial in the determination of ergodicity.

(b) One Free Particle on Square of Edge L

The phase space (x, p) is 4-D. The surface Sg of constant energy E is 3-D. The projection of Sg
onto the x-space covers the whole square. The projection of Sg onto the p-space is a circle of

radius \/ 2mE .

As in §(a), the system is non-ergodic if L - o or periodic boundary conditions are imposed.

For impenetrable walls, the component of the particle momentum perpendicular to the wall reverses
sign upon impact, thus allowing the phase point to jump to a different part of the circle in p-space. If
the ratio px/py of the initial momentum is an irrational number, the motion is ergodic. If px/py is
rational, the motion is periodic and hence non-ergodic. Since the set of rational numbers is a sub-
set of zero measure in the set of real number, the system is ergodic.

(c) Two Free Particles on Square of Edge L

By free particles we mean
1. There is no external forces.
2. The particles do not interact except when they collide.

The phase space (x1, p1, X2, p2) is 8-D. The surface Sg of constant energy E is 7-D. The projec-
tion of Sg onto the x;-space covers the whole square. The projection of Sg onto the (p1, p2)-space

is the 3-D spherical surface S° of radius \/ 2mE.
If we neglect collision effects, each particle will behave as described in §(b). Since each p; stays in
a fixed circle of radius \/ 2mE;, where Eq + E; = E, the system is non-ergodic.

Collision provides a mechanism for momentum-exchange between the particles and hence ergodic
motion.

The effects of collisions on two hard balls on a plane is described in
“TwoBallsOnBoundedPlane.nb”

Denoting a phase point as
X=(x1, p1, X2, P2) =(X1, Y1, P1x, Py, X2, Y2, P2x; P2y)
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=(Xy, ..., X3)
we study the evolution of a set of 3% =6561 phase points with initial coordinates
Xi=Xio+ jA i=1, ..., 8 j=-1,0,1

where Xj is a phase point depicting two hard balls about to collide and A is the separation between
neighboring phase points. A is chosen such that some of the phase points correspond to configura-
tions of no collision.

The following graphs are projections of X(f) onto the 3-D sub-spaces (x1, y1, p1) & (P1x, P1y, X1) at 3
different times:
blue dots: initial time.

magenta dots: right after collisions begin.
red dots: sometime after.

Note that phase points corresponding to no collision between the balls evolve close to each other
and occupy, at all times, a volume of constant size in the sub-space. Those corresponding to
collision spread out rapidly after collision occurs.
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Reminder: In the 8-D phase space, the size of the volume occupied by any set of phase points is a
constant in time.

(d) Conclusion

The foregoing consideration can be easily generalized to the case of a general system.

Consider an N-particle system with a Hamiltonian
H=Hy+V
N
where Hp = Zh,- is a sum of non-interacting 1-particle Hamiltonian h; and V denotes inter-particle
i=1
interactions. Note that h contains all external potentials and perhaps the 1-particle average of inter-
particle interactions.

The straight line trajectories of the free particles can be generalized as follows.

For a given 1-particle energy E;, the solutions of h; will give trajectories on the constant energy
(xi, pj) subspace in the phase space. Since these trajectories (for all possible E;) are solutions of
differential equations of single particles, they are unique (non-crossing) and covers the whole

(xi, pi) subspace.

The constant energy surface Sg is covered by these 1-particle solutions in the same manner as the
free particle trajectories. Thus, reflective boundary conditions are necessary for the trajectories to
cover the configuration sub-space (x4, ..., xp).

Inter-particle interactions V is the generalization of collisions and allow a phase point to cross
between 1-particle trajectories of different E;, and hence possible ergodicity.

Consider now the projection of p(X) onto the 1-particle sub-space p1(x1, p1). As can be seen in the
two-hard-ball example, the evolution of the exact p1(x1, p1, t), as governed by the Liouville equation,
is rather complicated. However, the evolution of p?(x1, p1) for a set of non-interacting particles is
trivial. This suggests another way to derive the equation of motion for p4.

Thus, instead of following the actual motion of a fixed set of phase points, we can follow a volume
A X of fixed size that moves according to Hy. The effect of V is then expressed as the scattering of
phase points into and out of A X. The result is the Boltzmann transport equation [see Chap.11].
Note that ergodicity is no longer an issue in this approach.



