B.3.2. The Number Representation for Fermions

Fermions obeys anti-commutation relations so that [ see (B.39¢c-d) & (B.40k) ],

ng=0,1 (B.61a)
In order to determine [ d,, @y ],, consider the following relations obtained using (B.40f) with (B.40l)
enforced:

(0] dzGa|0)=0 (0] dzdq |1)=0

(1] dqdq |0)=0 (1] 8qaa|1)=1
and

(0] @atg|0)=1 (0] dadg |1)=0

(1] @aGg |0)=0 (1] 8aly |1)=0

where, to avoid a clutter of symbols, we shall omit the subscript a on the bras & kets whenever it
causes no confusion.

Adding the members in the two sets of equations gives

(0] [@aag], |0)=1 (0] [Gmag], | 1)=0

(1|[210(,ar;]+ |O)=O (1|[aa,a;]+|1)=1 (B.61b)
Since{ | 0)q, | 1)a }Spansthe number space for state q, (B.61b) implies

[6,85], =1
which, combined with (B.39c-d), gives

[Ga 85 . =6ap

[0y, G5 ], =0 [Ga, G5 ], =0 Y a,B (B.61c)

Now, although (B.40f) still works if we enforce rigorously condition (B.40l), it is sometimes more conve-
nient to re-define ¢,, & d,, to make explicit

Gy | 1)=0
To this end, let us examine all possible outcomes of the operators:
dq 1 0)=0 dq | 1)=10)
Gy | 0)=] 1) Gy | 1)=0
Ggdq | 0)=0 Golq|1)= 1)
Galy | 0)=10) Galy | 1)=0

One solution, which can be easily checked, is

dq | Ng)=ng | ng-1) Gy | na)=(1-ng) | ng+1) (B.66a)
- Ggba | na)=Ggna| na-1) =nall-(ng-1)1 na) =na(2-nq) | na) =na | na)

Galy | na)=0a(l-na) | na+1) =(1-na)(na+1) | na) =(1-nq) | Na)
where we have used the relation

nt=ngq if Ng=0,1

Owing to (B.61a), (B.40h) simplifies to
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Aty Ny

| No, N1, «o. , Noo >=(a;)”0 | 0)0 ® (al)

0); ® ...® (@)™ | 0), (B.59)

Using the anti-commutators (B.39¢-d), we have

A+ Ny

Gq | Noy vy Nay v s Noo ) =0 (Gg) ™ | 0)y ® ... ®(dg)

A+ Ng

= (@)™ | 0)y ® ... ® (@

A+ |\ Ne

0); ® ..® (@)™ | 0),

At Noo

0); ® ... ® (a.)™ | 0),, (B.59a)

where
a-1
Sa= Z ng=number of exchanges d, made in order to reach | ng). (B.59Db)
ﬁ:O
Using (B.66a), (B.59a) becomes
da | Noy vy Nay ooy Neo Y= (<)% Ng | N0y ooy Ng=1, o) Noo ) (B.69)
Similarly,
G | Noy vy Ny s Moo )= (2)52(1=ng) | Noy coeyNa+ 1, v, Noo ) (B.70)

Finally, since r is a product of two operators, its exchange with any single operator will produce two
sign changes that cancel out. Hence

ﬁaaE=aEﬁa ﬁaaﬁ =aﬁﬁa Vaiﬁ
so that
Ag | Noy vy Nay ooy Noo Y= Ng | Noy wvvy Ny ey Noo ) (B.70a)
A A+
o by | N0y vy Ny woe s Noo )= (1=Ng) | No, ooy Ny wov s Moo ) (B.70b)

Needless to say, we still have the orthonormality & completeness relations
(Noy oy Nty o s Noo | N0y vy N’y vy Neo' Y =gyt - Onange -+ O (B.70c)

Z | N0y ooy Ny wov s noo> < N0y oy Naty ooe s Noo | =1 (B.70d)

Nosoi e
Now, (B.39b) gives
| Ky s b )P = G, | O)
= | ey Migy ey Nigyy oo ) (B.71a)
where we have made use of the convention that the list {ky, ..., kv }in | ky, ..., ky )(A) is always in
ascending order [ see final paragraph of §B.3.0]. Hence,
Pl ki, s k) =P | s My s My ) (B.71b)

Our next task is to write the N-representation of operators that are functions of the canonical operators
{ﬁf: ai: §Zf }'
In general, the N-representation &™ of an m-body fermion operator @f\,m) is defined by

A (4) A
(A)< ki, ..., ky | Of\;n) | ki', ..., ky' > =< s iy eee s Nigy s e (D(m) | s iy ey Nigy s >

A kj &kj' j: 1, ..,N (B71C)
Since 6,(\,"7) is invariant under particle permutations,

A (A) ~ (A)
<k1, ok | O | Kt ...,k,\,'> =<k1, o ke | PO Pt | Ky, ...,kN'>
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A(m)

:(_)7’<k1, ok | POV | ko, ...,kN'>(A)

where (-)7" = (-)” since ® & P! are composed of the same number of 2-particle exchanges.

Thus, each signed term in (A)< ki, ..., ky | gives the same contribution to the matrix element (B.71a).
Since there are N! terms in (A)< ki, ..., kn |, which comes with a normalization constant , we have
Vv N!
) A(m) “) A(m) (A)
N (kl, ok | O] o, ...,kN'> = VNI <k1, ok | O | Ko, ...,kN'>
NN O
:<k1, I > (B.71f)
where (B.33) was used.
Consider now the 1-body operator
N
A(l A A A A A
Of\,) = ZO; 0i=0"(p;,qi, i) (B.52)
=1
Since 0; operates only on the states of particle i, the orthonormality (B.23) gives
(Ko s | 0| 'y s den” )= (ki | O] k") G
s%i
A(l
=<k,‘ | O( ) | k,">-|_|- 6kjk/' (B?2a)
J*i
which is exactly the same as (B.54b).
Setting
ki=a ki'=a'
the non-vanishing matrix elements must take the form
A A Al
< ...,k,‘, O/ ...,k,", >=<k,‘| O,'|k,">=<a| O()|a'> (B72b)

Since a & a' are arbitrary, they will be at different positions in the ordered list. Hence, the non-vanish-
ing matrix elements of (B.72a) takes the form

O b | O] s bty )
a a' A(1) a a'
=< L1, ..,0, D) | 0, ., 1, > [ @<a'assumed. ]

OF | s ko )
= ()P (ki | O] k')
=P (a] 0" | ) (B.72¢)

where %;, is the permutation that brings p into position i.

a a'
For | .., k', .)") or | O T ), the relevant positions are as follows
j p
G Qe e a .-
0 1
Let

Sip = number of particles in positions between, but excluding, positionsi &p (ora&a').
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Then
P, is composed of S;, 2-particle exchanges required to bring a particle at p to position /.

5 (P
a'-1
Sip=Saa = Z ng

B=a+l

- Sa [a<a'] (B.72d)

Ng=0

where [see (B.59b) ]
a-1
Sa= Z ng
B=0

Using (B.69) & (B.70), we have

:
A+ A a a

Gyl | ey 0,0, 1, > = (=) ag

= Sy

= ()% ()

= (=S

A > [(B72d)used.]  (B.72€)

We emphasize that in order to use (B.72d), S must be evaluated with n, = 0 so that a, must execute
before d;,. Since a* a',

A+ A

Ga dg = —aa Ga
Using (B.72e), we can reproduce (B.72c) by

& = ( a | o | a') G4 ¢ + other terms that evaluate to zero (B.72f)
Although we have assumed a < a', it is easy to check that (B.72e &f) also apply to a> a'.

For a=a', the orthogonal condition (B.71c) implies
| kl', eey kN' >= | kl, ey kN>
i.e., we are dealing with the diagonal elements of f),(\,l).

Since
a=a' > i=p - (-)Pr=1
(B.71e) is therefore modified to give
A (A)
(A)( S ol kN>
A (=)
:<k1, ok | OF | K s kN>
N
=> (k| O] k") [(-)P=1]
=1
=5 (a| oW | ) (B.71g)
a
Using [ see (B.70b) ]
A+ A a a
aaaa| vy 1 >= | ey 1 >

we can reproduce (B.71g) by
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& =Z (a 10" a) Gy, Gq + off-diagonal terms (B.71h)
a
Combining (B.71f & h) gives
o = Z (a | o% | a') Gy Qg (B.72)
a,a'

for arbitrary states. Note that (B.72) is exactly the same as (B.53) for bosons.

Obviously, the foregoing procedure can be applied to an arbitrary m-body operator @;,m). Consider then
the 2-body operator

ao NEDZ 1N N . A A A
o= > O;==> > 0O Oij= 01, @i, 521, By, G5 S2) (B.57)
<7 2 =1j(+0)=1

Setting m=2in (B.71b) gives

R o) R )
(A)( Ky e b | O | Hat, s kN'> =<k1, ok | OF | Kty s kN'> (B.73a)

Since 0;; operates only on the states of particles / & j, the orthonormality (B.23) gives [ c.f. (B.71c) ]

A R oy R A R I R
m#*i,n#*f
=(kiki | 09 1 k') TT Gtk Gk (B.73b)
m#*i,n#*f

The nonvanishing matrix elements are of the form [ c.f. (B.72b) ]

< o, ki, ...,kj, 6,‘]‘ | ki ...,kj', >=<k,'k/' | é,’j | k,"kj'> (B.73C)
Setting

ki=a k,'=a'

ki=B kq'=P' [a<p,a'<p']

so that the nonvanishing matrix elements of (B.72a) take the form

\ @
(A>< o kil | OF | ko, kg, >

B ' B A B ' B
=< o 1,.01,..,0,..,0, .. | o | oy 0,0,0, 0,1, .1, > (B.72d)
A2 (=)
=< Ky s Ky | OV | ke kg >
- A(2 1 ot A(2 ] 1 1 1
=(-Prie[(ap1 071 a'p)-(ap | 07| B a)] [a<p,a'<p']  (B.72e)
where #;, ;4 is the permutation that bringsitop & jto q.
, , (=) a B a' B .y
For | ..., ky', ..., kq', ) or | w30, 0,0, oy, 1, 0,1 ),the relevant positions are as follows
i J p q
QA cov0 [3 cor aen e LN
6§ 174
If we movep—i firstandtheng- .
Pip,jq=3a' - Sq +5[5' —Sﬁ (B.72f)
ng=0 Na'=o

Using (B.69) & (B.70), we have

At At A A a a B B At AF A a a B B
by bp0p Gg | w30, 0y 1,0, 0,1, > =(-)% dgqlpag | ...,0, .., 0, ..., 0, ... >
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A+ At

« o p B
= ()% (<)% 8485 | ., 0, ., 0, ..,0, .., 0, >

. «a @ B g
= ()5 (<)% ()% &% | )0, oy O, 0y 0, o 1, >

= (=)5¢ (<)% (=)%8 (=)S= ...,3, s ‘5', ...,g, e !i, > (B.72g)

where all §;'s are the same as those (B.72f). Note that a, has to act 1st in order for Sg to be evaluated
With Ng' = 0.

(B.72e) can therefore be duplicated by
07=(ap| 0| a'p)a50505 80 +(ap) 07 | B a’) 6% 8} 0u bp
+ other terms that evaluate to zero (B.73a)
where, as in (B.72f), all assumptions on the relative positions of a, 8, ', ' can be removed.

For fermions, we cannot have a=gor a'=B'since they require n, =2 orny =2. Although we can have
a=a',or B=p', or both, they are readily covered by (B.73a). In this absence of diagonal components,

we can generalize (B.73a) to
n 1 A At At A A
®(2) _ - Z <a/3 | O(2) | a'ﬁ')a;a;}aﬁl By (B.73)
2 b ap

1
where, like bosons, the factor 5 comes from removing the condition a < g.



