B.3.2. The Number Representation for Fermions

Fermions obeys anti-commutation relations so that [see (B.39c-d) & (B.40k)],

$$n_{\alpha} = 0, 1$$
 (B.61a)

In order to determine $[\hat{a}_{\alpha}, \hat{a}_{\alpha}^{\dagger}]_{+}$, consider the following relations obtained using (B.40f) with (B.40l) enforced:

and

$$\langle 0 \mid \hat{a}_{\alpha} \hat{a}_{\alpha}^{+} \mid 0 \rangle = 1$$

$$\langle 0 \mid \hat{a}_{\alpha} \hat{a}_{\alpha}^{+} \mid 1 \rangle = 0$$

$$\langle 1 \mid \hat{a}_{\alpha} \hat{a}_{\alpha}^{+} \mid 0 \rangle = 0$$

$$\langle 1 \mid \hat{a}_{\alpha} \hat{a}_{\alpha}^{+} \mid 1 \rangle = 0$$

where, to avoid a clutter of symbols, we shall omit the subscript α on the bras & kets whenever it causes no confusion.

Adding the members in the two sets of equations gives

$$\langle 0 \mid [\hat{a}_{\alpha}, \hat{a}_{\alpha}^{+}]_{+} \mid 0 \rangle = 1 \qquad \langle 0 \mid [\hat{a}_{\alpha}, \hat{a}_{\alpha}^{+}]_{+} \mid 1 \rangle = 0$$

$$\langle 1 \mid [\hat{a}_{\alpha}, \hat{a}_{\alpha}^{+}]_{+} \mid 0 \rangle = 0 \qquad \langle 1 \mid [\hat{a}_{\alpha}, \hat{a}_{\alpha}^{+}]_{+} \mid 1 \rangle = 1 \qquad (B.61b)$$

Since $\{ \mid 0 \rangle_{\alpha}, \mid 1 \rangle_{\alpha} \}$ spans the number space for state α , (B.61b) implies

$$[\hat{a}_{\alpha}, \hat{a}_{\alpha}^{\dagger}]_{\perp} = \hat{1}$$

which, combined with (B.39c-d), gives

$$\begin{bmatrix} \hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger} \end{bmatrix}_{+} = \delta_{\alpha\beta}$$

$$\begin{bmatrix} \hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger} \end{bmatrix}_{+} = 0 \qquad \begin{bmatrix} \hat{a}_{\alpha}, \hat{a}_{\beta} \end{bmatrix}_{+} = 0 \qquad \forall \alpha, \beta$$
(B.61c)

Now, although (B.40f) still works if we enforce rigorously condition (B.40l), it is sometimes more convenient to re-define $c_{n_{\alpha}}$ & $d_{n_{\alpha}}$ to make explicit

$$\hat{a}_{\alpha}^{\dagger} \mid 1 \rangle = 0$$

To this end, let us examine all possible outcomes of the operators:

$$\begin{array}{lll} \hat{a}_{\alpha} \mid 0 \rangle = 0 & \hat{a}_{\alpha} \mid 1 \rangle = \mid 0 \rangle \\ \hat{a}_{\alpha}^{+} \mid 0 \rangle = \mid 1 \rangle & \hat{a}_{\alpha}^{+} \mid 1 \rangle = 0 \\ \hat{a}_{\alpha}^{+} \hat{a}_{\alpha} \mid 0 \rangle = 0 & \hat{a}_{\alpha}^{+} \hat{a}_{\alpha} \mid 1 \rangle = \mid 1 \rangle \\ \hat{a}_{\alpha} \hat{a}_{\alpha}^{+} \mid 0 \rangle = \mid 0 \rangle & \hat{a}_{\alpha} \hat{a}_{\alpha}^{+} \mid 1 \rangle = 0 \end{array}$$

One solution, which can be easily checked, is

$$\hat{a}_{\alpha} \mid n_{\alpha} \rangle = n_{\alpha} \mid n_{\alpha} - 1 \rangle \qquad \hat{a}_{\alpha}^{\dagger} \mid n_{\alpha} \rangle = (1 - n_{\alpha}) \mid n_{\alpha} + 1 \rangle$$

$$\Rightarrow \qquad \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha} \mid n_{\alpha} \rangle = \hat{a}_{\alpha}^{\dagger} n_{\alpha} \mid n_{\alpha} - 1 \rangle = n_{\alpha} [1 - (n_{\alpha} - 1)] \mid n_{\alpha} \rangle = n_{\alpha} (2 - n_{\alpha}) \mid n_{\alpha} \rangle = n_{\alpha} \mid n_{\alpha} \rangle$$

$$\hat{a}_{\alpha} \hat{a}_{\alpha}^{\dagger} \mid n_{\alpha} \rangle = \hat{a}_{\alpha} (1 - n_{\alpha}) \mid n_{\alpha} + 1 \rangle = (1 - n_{\alpha}) (n_{\alpha} + 1) \mid n_{\alpha} \rangle = (1 - n_{\alpha}) \mid n_{\alpha} \rangle$$
(B.66a)

where we have used the relation

$$n_{\alpha}^2 = n_{\alpha}$$
 if $n_{\alpha} = 0, 1$

Owing to (B.61a), (B.40h) simplifies to

$$| n_0, n_1, \dots, n_{\infty} \rangle = (\hat{a}_0^+)^{n_0} | 0 \rangle_0 \otimes (\hat{a}_1^+)^{n_1} | 0 \rangle_1 \otimes \dots \otimes (\hat{a}_{\infty}^+)^{n_{\infty}} | 0 \rangle_{\infty}$$
 (B.59)

Using the anti-commutators (B.39c-d), we have

$$\hat{a}_{\alpha} \mid n_{0}, \dots, n_{\alpha}, \dots, n_{\infty} \rangle = \hat{a}_{\alpha} \left(\hat{a}_{0}^{+} \right)^{n_{0}} \mid 0 \rangle_{0} \otimes \dots \otimes \left(\hat{a}_{\alpha}^{+} \right)^{n_{\alpha}} \mid 0 \rangle_{1} \otimes \dots \otimes \left(\hat{a}_{\infty}^{+} \right)^{n_{\infty}} \mid 0 \rangle_{\infty}$$

$$= (-)^{S_{\alpha}} \left(\hat{a}_{0}^{+} \right)^{n_{0}} \mid 0 \rangle_{0} \otimes \dots \otimes \hat{a}_{\alpha} \left(\hat{a}_{\alpha}^{+} \right)^{n_{\alpha}} \mid 0 \rangle_{1} \otimes \dots \otimes \left(\hat{a}_{\infty}^{+} \right)^{n_{\infty}} \mid 0 \rangle_{\infty}$$
(B.59a)

where

$$S_{\alpha} = \sum_{\beta=0}^{\alpha-1} n_{\beta} = \text{number of exchanges } \hat{a}_{\alpha} \text{ made in order to reach } | n_{\alpha} \rangle.$$
 (B.59b)

Using (B.66a), (B.59a) becomes

$$\hat{a}_{\alpha} \mid n_0, \dots, n_{\alpha}, \dots, n_{\infty} \rangle = (-)^{S_{\alpha}} n_{\alpha} \mid n_0, \dots, n_{\alpha} - 1, \dots, n_{\infty} \rangle$$
 (B.69)

Similarly.

$$\hat{a}_{\alpha}^{+} \mid n_{0}, \dots, n_{\alpha}, \dots, n_{\infty} \rangle = (-)^{S_{\alpha}} (1 - n_{\alpha}) \mid n_{0}, \dots, n_{\alpha} + 1, \dots, n_{\infty} \rangle$$
(B.70)

Finally, since \hat{n}_{α} is a product of two operators, its exchange with any single operator will produce two sign changes that cancel out. Hence

$$\hat{n}_{\alpha}\,\hat{a}^{+}_{\beta} = \hat{a}^{+}_{\beta}\,\hat{n}_{\alpha} \qquad \qquad \hat{n}_{\alpha}\,\hat{a}_{\beta} = \hat{a}_{\beta}\,\hat{n}_{\alpha} \qquad \qquad \forall \ \alpha \neq \beta$$

so that

$$\hat{n}_{\alpha} \mid n_{0}, \dots, n_{\alpha}, \dots, n_{\infty} \rangle = n_{\alpha} \mid n_{0}, \dots, n_{\alpha}, \dots, n_{\infty} \rangle$$

$$\hat{a}_{\alpha} \hat{a}_{\alpha}^{\dagger} \mid n_{0}, \dots, n_{\alpha}, \dots, n_{\infty} \rangle = (1 - n_{\alpha}) \mid n_{0}, \dots, n_{\alpha}, \dots, n_{\infty} \rangle$$
(B.70a)
(B.70b)

Needless to say, we still have the orthonormality & completeness relations

$$\langle n_0, ..., n_{\alpha}, ..., n_{\infty} | n_0', ..., n_{\alpha}', ..., n_{\infty}' \rangle = \delta_{n_0 n_0'} ... \delta_{n_{\alpha} n_{\alpha}'} ... \delta_{n_{\infty} n_{\infty}'}$$
 (B.70c)

$$\sum_{n_0, \dots, n_{\infty}} | n_0, \dots, n_{\alpha}, \dots, n_{\infty} \rangle \langle n_0, \dots, n_{\alpha}, \dots, n_{\infty} | = \hat{1}$$
(B.70d)

Now, (B.39b) gives

$$|k_1, ..., k_N\rangle^{(A)} = \hat{a}_{k_1}^+ ... \hat{a}_{k_N}^+ |0\rangle$$

= $|..., n_{k_1}, ..., n_{k_N}, ...\rangle$ (B.71a)

where we have made use of the convention that the list $\{k_1, ..., k_N\}$ in $|k_1, ..., k_N\rangle^{(A)}$ is always in ascending order [see final paragraph of §B.3.0]. Hence,

$$\mathcal{P} \mid k_1, \dots, k_N \rangle^{(A)} = (-)^{\mathcal{P}} \mid \dots, n_{k_1}, \dots, n_{k_N}, \dots \rangle$$
 (B.71b)

Our next task is to write the N-representation of operators that are functions of the canonical operators $\{\hat{\boldsymbol{p}}_i, \hat{\boldsymbol{q}}_i, \hat{\boldsymbol{s}}_{zi}\}.$

In general, the *N*-representation $\hat{\mathbb{Q}}^{(m)}$ of an *m*-body fermion operator $\hat{\mathbb{Q}}_N^{(m)}$ is defined by

Since $\hat{O}_N^{(m)}$ is invariant under particle permutations,

$$\left(\ k_{1}, \ \ldots, \ k_{N} \ \middle| \ \hat{O}_{N}^{(m)} \ \middle| \ k_{1}', \ \ldots, \ k_{N}' \ \right)^{(A)} = \left(\ k_{1}, \ \ldots, \ k_{N} \ \middle| \ \mathcal{P} \ \hat{O}_{N}^{(m)} \ \mathcal{P}^{-1} \ \middle| \ k_{1}', \ \ldots, \ k_{N}' \ \right)^{(A)}$$

$$= (-)^{\mathcal{P}} \left(k_1, \ldots, k_N \mid \mathcal{P} \, \hat{O}_N^{(m)} \mid k_1', \ldots, k_N' \right)^{(A)}$$

where $(-)^{\mathcal{P}^{-1}} = (-)^{\mathcal{P}}$ since $\mathcal{P} \& \mathcal{P}^{-1}$ are composed of the same number of 2-particle exchanges.

Thus, each signed term in $^{(A)}$ $\left(k_1, ..., k_N \mid \text{gives the same contribution to the matrix element (B.71a)}\right)$.

Since there are N! terms in $\binom{A}{k_1}$, ..., k_N , which comes with a normalization constant $\frac{1}{\sqrt{\dots}}$, we have

where (B.33) was used.

Consider now the 1-body operator

$$\hat{O}_{N}^{(1)} = \sum_{i=1}^{N} \hat{O}_{i} \qquad \qquad \hat{O}_{i} = O^{(1)}(\hat{p}_{i}, \hat{q}_{i}, \hat{s}_{zi})$$
(B.52)

Since \hat{O}_i operates only on the states of particle i, the orthonormality (B.23) gives

$$\left\langle k_{1}, \dots, k_{N} \mid \hat{O}_{i} \mid k_{1}', \dots, k_{N}' \right\rangle = \left\langle k_{i} \mid \hat{O}_{i} \mid k_{i}' \right\rangle \prod_{j \neq i} \delta_{k_{j} k_{j}'}$$

$$= \left\langle k_{i} \mid \hat{O}^{(1)} \mid k_{i}' \right\rangle \prod_{j \neq i} \delta_{k_{j} k_{j}'}$$

$$(B.72a)$$

which is exactly the same as (B.54b).

Setting

$$k_i = \alpha$$
 $k_i' = \alpha'$

the non-vanishing matrix elements must take the form

$$\left\langle \ldots, k_i, \ldots \mid \hat{O}_i \mid \ldots, k_i', \ldots \right\rangle = \left\langle k_i \mid \hat{O}_i \mid k_i' \right\rangle = \left\langle \alpha \mid \hat{O}^{(1)} \mid \alpha' \right\rangle$$
 (B.72b)

Since $\alpha \& \alpha'$ are arbitrary, they will be at different positions in the ordered list. Hence, the non-vanishing matrix elements of (B.72a) takes the form

$$(A)\left\langle \begin{array}{c} \dots, k_{i}, \dots \mid \hat{O}_{N}^{(1)} \mid \dots, k_{p}', \dots \right\rangle^{(A)} \\ = \left\langle \begin{array}{c} \dots, 1, \dots, 0, \dots \mid \hat{O}^{(1)} \mid \dots, 0, \dots, 1, \dots \right\rangle & [\alpha < \alpha' \text{ assumed.}] \\ = \left\langle \begin{array}{c} \dots, k_{i}, \dots \mid \hat{O}_{N}^{(1)} \mid \dots, k_{p}', \dots \right\rangle^{(-)} \\ = (-)^{\mathcal{P}_{ip}}\left\langle k_{i} \mid \hat{O}_{i} \mid k_{p}' \right\rangle \\ = (-)^{\mathcal{P}_{ip}}\left\langle \alpha \mid \hat{O}^{(1)} \mid \alpha' \right\rangle & (B.72c) \end{array}$$

where \mathcal{P}_{ip} is the permutation that brings p into position i.

For
$$| \dots, k_p', \dots \rangle^{(-)}$$
 or $| \dots, \overset{\alpha}{0}, \dots, \overset{\alpha'}{1}, \dots \rangle$, the relevant positions are as follows $\dots \overset{i}{\underset{0}{\alpha}} \dots \dots \overset{p}{\underset{1}{\alpha'}} \dots$

Let

 S_{ip} = number of particles in positions between, but excluding, positions i & p (or $\alpha \& \alpha'$).

Then

 \mathcal{P}_{ip} is composed of S_{ip} 2-particle exchanges required to bring a particle at p to position i.

$$\rightarrow \quad (-)^{\mathcal{P}_{ip}} = (-)^{S_{ip}}$$

$$S_{ip} = S_{\alpha \alpha'} = \sum_{\beta = \alpha + 1}^{\alpha' - 1} n_{\beta}$$

$$= S_{\alpha'} \Big|_{n_{\alpha} = 0} - S_{\alpha} \qquad [\alpha < \alpha']$$
(B.72d)

where [see (B.59b)]

$$S_{\alpha} = \sum_{\beta=0}^{\alpha-1} n_{\beta}$$

Using (B.69) & (B.70), we have

$$\hat{a}_{\alpha}^{+} \hat{a}_{\alpha'} \mid \dots, \stackrel{\alpha'}{0}, \dots, \stackrel{\alpha'}{1}, \dots \rangle = (-)^{S_{\alpha'}} \hat{a}_{\alpha}^{+} \mid \dots, \stackrel{\alpha}{0}, \dots, \stackrel{\alpha'}{0}, \dots \rangle
= (-)^{S_{\alpha'}} (-)^{S_{\alpha}} \mid \dots, \stackrel{\alpha'}{1}, \dots, \stackrel{\alpha'}{0}, \dots \rangle
= (-)^{S_{\alpha\alpha'}} \mid \dots, \stackrel{\alpha'}{1}, \dots, \stackrel{\alpha'}{0}, \dots \rangle \qquad [(B.72d) \text{ used.}]$$
(B.72e)

We emphasize that in order to use (B.72d), $S_{\alpha'}$ must be evaluated with $n_{\alpha} = 0$ so that $a_{\alpha'}$ must execute before $\hat{a}_{\alpha'}^+$. Since $\alpha \neq \alpha'$,

$$\hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha'} = -\hat{a}_{\alpha'} \hat{a}_{\alpha'}^{\dagger}$$

Using (B.72e), we can reproduce (B.72c) by

$$\hat{\mathbb{D}}^{(1)} = \left\langle \alpha \mid \hat{\mathcal{O}}^{(1)} \mid \alpha' \right\rangle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha'} + \text{other terms that evaluate to zero}$$
 (B.72f)

Although we have assumed $\alpha < \alpha'$, it is easy to check that (B.72e & f) also apply to $\alpha > \alpha'$.

For $\alpha = \alpha'$, the orthogonal condition (B.71c) implies

$$| k_1', ..., k_N' \rangle = | k_1, ..., k_N \rangle$$

i.e., we are dealing with the diagonal elements of $\hat{O}_{N}^{(1)}$.

Since

$$\alpha = \alpha' \quad \rightarrow \quad i = p \quad \rightarrow \quad (-)^{\mathcal{P}_{ip}} = 1$$

(B.71e) is therefore modified to give

$$(A) \left\langle k_{1}, \ldots, k_{N} \mid \hat{O}_{N}^{(1)} \mid k_{1}, \ldots, k_{N} \right\rangle^{(A)}$$

$$= \left\langle k_{1}, \ldots, k_{N} \mid \hat{O}_{N}^{(1)} \mid k_{1}, \ldots, k_{N} \right\rangle^{(-)}$$

$$= \sum_{i=1}^{N} \left\langle k_{i} \mid \hat{O}_{i} \mid k_{i}^{i} \right\rangle \qquad \left[(-)^{\mathcal{P}_{ii}} = 1 \right]$$

$$= \sum_{\alpha} \left\langle \alpha \mid \hat{O}^{(1)} \mid \alpha \right\rangle \qquad (B.71g)$$

Using [see (B.70b)]

$$\hat{a}^+_\alpha \hat{a}_\alpha \left| \right. \dots, \stackrel{\alpha}{1}, \dots \left. \right\rangle = \left. \left| \right. \dots, \stackrel{\alpha}{1}, \dots \right. \right\rangle$$

we can reproduce (B.71g) by

$$\hat{\mathbb{O}}^{(1)} = \sum_{\alpha} \left\langle \alpha \mid \hat{\mathcal{O}}^{(1)} \mid \alpha \right\rangle \hat{a}_{\alpha}^{+} \hat{a}_{\alpha} + \text{off-diagonal terms}$$
 (B.71h)

Combining (B.71f & h) gives

$$\hat{\mathbb{O}}^{(1)} = \sum_{\alpha, \alpha'} \left\langle \alpha \mid \hat{\mathcal{O}}^{(1)} \mid \alpha' \right\rangle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha'} \tag{B.72}$$

for arbitrary states. Note that (B.72) is exactly the same as (B.53) for bosons.

Obviously, the foregoing procedure can be applied to an arbitrary m-body operator $\hat{O}_N^{(m)}$. Consider then the 2-body operator

$$\hat{O}_{N}^{(2)} = \sum_{i=j}^{N(N-1)/2} \hat{O}_{ij} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j (\neq i)=1}^{N} \hat{O}_{ij} \qquad \hat{O}_{ij} = O^{(2)}(\hat{\boldsymbol{p}}_{i}, \hat{\boldsymbol{q}}_{i}, \hat{\boldsymbol{s}}_{zi}, \hat{\boldsymbol{p}}_{j}, \hat{\boldsymbol{q}}_{j}, \hat{\boldsymbol{s}}_{zj})$$
(B.57)

Setting m = 2 in (B.71b) gives

Since \hat{O}_{ij} operates only on the states of particles i & j, the orthonormality (B.23) gives [c.f. (B.71c)]

$$\left\langle k_{1}, \ldots, k_{N} \mid \hat{O}_{ij} \mid k_{1}', \ldots, k_{N}' \right\rangle = \left\langle k_{i} k_{j} \mid \hat{O}_{ij} \mid k_{i}' k_{j}' \right\rangle \prod_{m \neq i, n \neq j} \delta_{k_{m} k_{m}'} \delta_{k_{n} k_{n}'}$$

$$= \left\langle k_{i} k_{j} \mid \hat{O}^{(2)} \mid k_{i}' k_{j}' \right\rangle \prod_{m \neq i, n \neq j} \delta_{k_{m} k_{m}'} \delta_{k_{n} k_{n}'}$$

$$(B.73b)$$

The nonvanishing matrix elements are of the form [c.f. (B.72b)]

$$\langle \dots, k_i, \dots, k_j, \dots \mid \hat{O}_{ij} \mid \dots, k_i', \dots, k_j', \dots \rangle = \langle k_i k_j \mid \hat{O}_{ij} \mid k_i' k_j' \rangle$$
 (B.73c)

Setting

$$k_i = \alpha$$
 $k_p' = \alpha'$ $k_j = \beta$ $k_q' = \beta'$ [$\alpha < \beta$, $\alpha' < \beta'$] so that the nonvanishing matrix elements of (B.72a) take the form

$$\begin{array}{lll}
& (A) \left\langle & \dots, k_{i}, \dots, k_{j}, \dots \mid \hat{O}_{N}^{(2)} \mid \dots, k_{p}', \dots, k_{q}', \dots \right\rangle^{(A)} \\
& = \left\langle & \dots, \stackrel{\alpha}{1}, \dots, \stackrel{\beta}{1}, \dots, \stackrel{\alpha'}{0}, \dots \mid \hat{O}_{N}^{(2)} \mid \dots, \stackrel{\alpha}{0}, \dots, \stackrel{\beta}{0}, \dots, \stackrel{\alpha'}{1}, \dots, \stackrel{\beta'}{1}, \dots \right\rangle \\
& = \left\langle & \dots, k_{i}, \dots, k_{j}, \dots \mid \hat{O}_{N}^{(2)} \mid \dots, k_{p}', \dots, k_{q}', \dots \right\rangle^{(-)} \\
& = (-)^{\mathcal{P}_{ip,jq}} \left[\left\langle \alpha \beta \mid \hat{O}^{(2)} \mid \alpha' \beta' \right\rangle - \left\langle \alpha \beta \mid \hat{O}^{(2)} \mid \beta' \alpha' \right\rangle \right] \qquad [\alpha < \beta, \alpha' < \beta'] \qquad (B.72e)
\end{array}$$

where $\mathcal{P}_{ip,jq}$ is the permutation that brings *i* to *p* & *j* to *q*.

For
$$|\ldots, k_p', \ldots, k_q', \ldots\rangle^{(-)}$$
 or $|\ldots, \overset{\alpha}{0}, \ldots, \overset{\beta}{0}, \ldots, \overset{\alpha'}{1}, \ldots\rangle$, the relevant positions are as follows $\vdots \overset{i}{0} \overset{j}{0} \overset{p}{0} \overset{q}{0} \overset{q}{0} \overset{\cdots}{0} \overset{\alpha'}{0} \overset{\beta'}{0} \overset{\cdots}{0} \overset{\beta'}{0} \overset{\cdots}{0} \overset{\alpha'}{0} \overset{\beta'}{0} \overset{\cdots}{0} \overset{\alpha'}{0} \overset{\beta'}{0} \overset{\cdots}{0} \overset{\beta'}{0} \overset{\cdots}{0} \overset{\alpha'}{0} \overset{\beta'}{0} \overset{\cdots}{0} \overset{\alpha'}{0} \overset{\beta'}{0} \overset{\cdots}{0} \overset{\beta'}{0} \overset{\cdots}{0} \overset{\beta'}{0} \overset{\cdots}{0} \overset{\alpha'}{0} \overset{\beta'}{0} \overset{\cdots}{0} \overset{\beta'}{0} \overset{\gamma}{0} \overset$

If we move $p \rightarrow i$ first and then $q \rightarrow i$.

$$\mathcal{P}_{ip,jq} = S_{\alpha'} - S_{\alpha} \Big|_{n_{\beta} = 0} + S_{\beta'} \Big|_{n_{\alpha = 0}} - S_{\beta}$$
(B.72f)

Using (B.69) & (B.70), we have

$$\hat{a}_{\alpha}^{+}\hat{a}_{\beta}^{+}\hat{a}_{\beta^{\prime}}\hat{a}_{\alpha^{\prime}}\left|\right. \dots, \stackrel{\alpha}{0}, \dots, \stackrel{\alpha^{\prime}}{1}, \dots, \stackrel{\beta}{0}, \dots, \stackrel{\beta^{\prime}}{1}, \dots\right\rangle = (-)^{S_{\alpha^{\prime}}}\hat{a}_{\alpha}^{+}\hat{a}_{\beta}^{+}\hat{a}_{\beta^{\prime}}\left|\right. \dots, \stackrel{\alpha}{0}, \dots, \stackrel{\alpha^{\prime}}{0}, \dots, \stackrel{\beta}{0}, \dots, \stackrel{\beta^{\prime}}{1}, \dots\right\rangle$$

$$\begin{split} &= (-)^{S_{\alpha'}} (-)^{S_{\beta'}} \, \hat{a}_{\alpha}^{+} \, \hat{a}_{\beta}^{+} \, \Big| \, \dots, \overset{\alpha}{0}, \, \dots, \overset{\alpha'}{0}, \, \dots, \overset{\beta'}{0}, \, \dots, \overset{\beta'}{0}, \, \dots \Big) \\ &= (-)^{S_{\alpha'}} (-)^{S_{\beta'}} (-)^{S_{\beta}} \, \hat{a}_{\alpha}^{+} \, \Big| \, \dots, \overset{\alpha}{0}, \, \dots, \overset{\alpha'}{0}, \, \dots, \overset{\beta}{0}, \, \dots, \overset{\beta'}{1}, \, \dots \Big) \\ &= (-)^{S_{\alpha'}} (-)^{S_{\beta'}} (-)^{S_{\beta}} (-)^{S_{\alpha}} \, \Big| \, \dots, \overset{\alpha}{0}, \, \dots, \overset{\alpha'}{0}, \, \dots, \overset{\beta}{0}, \, \dots, \overset{\beta'}{1}, \, \dots \Big) \end{split} \tag{B.72g}$$

where all S_j 's are the same as those (B.72f). Note that $a_{\alpha'}$ has to act 1st in order for $S_{\beta'}$ to be evaluated with $n_{\alpha'} = 0$.

(B.72e) can therefore be duplicated by

$$\hat{\mathbb{O}}^{(2)} = \left\langle \alpha \beta \mid \hat{\mathcal{O}}^{(2)} \mid \alpha' \beta' \right\rangle \hat{a}_{\alpha}^{+} \hat{a}_{\beta}^{+} \hat{a}_{\beta'} \hat{a}_{\alpha'} + \left\langle \alpha \beta \mid \hat{\mathcal{O}}^{(2)} \mid \beta' \alpha' \right\rangle \hat{a}_{\alpha}^{+} \hat{a}_{\beta}^{+} \hat{a}_{\alpha'} \hat{a}_{\beta'}$$
+ other terms that evaluate to zero
(B.73a)

where, as in (B.72f), all assumptions on the relative positions of α , β , α' , β' can be removed.

For fermions, we cannot have $\alpha = \beta$ or $\alpha' = \beta'$ since they require $n_{\alpha} = 2$ or $n_{\alpha'} = 2$. Although we can have $\alpha = \alpha'$, or $\beta = \beta'$, or both, they are readily covered by (B.73a). In this absence of diagonal components, we can generalize (B.73a) to

$$\hat{\mathbb{O}}^{(2)} = \frac{1}{2} \sum_{\alpha, \beta, \alpha', \beta'} \left\langle \alpha \beta \mid \hat{\mathcal{O}}^{(2)} \mid \alpha' \beta' \right\rangle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\beta'} \hat{a}_{\alpha'} \tag{B.73}$$

where, like bosons, the factor $\frac{1}{2}$ comes from removing the condition $\alpha < \beta$.