
B.3.2.  The Number Representation for Fermions

Fermions obeys anti-commutation relations so that [ see (B.39c-d) & (B.40k) ],
nα = 0, 1 (B.61a)

In order to determine  aα , aα
+
+, consider the following relations obtained using (B.40f) with (B.40l) 

enforced:
 0 aα

+
aα 0  = 0  0 aα

+
aα 1  = 0

 1 aα
+
aα 0  = 0  1 aα

+
aα 1  = 1

and
 0 aα aα

+ 0  = 1  0 aα aα
+ 1  = 0

 1 aα aα
+ 0  = 0  1 aα aα

+ 1  = 0

where, to avoid a clutter of symbols, we shall omit the subscript α on the bras & kets whenever it 
causes no confusion.

Adding the members in the two sets of equations gives
 0  aα, aα

+
+ 0  = 1  0  aα, aα

+
+ 1  = 0

 1  aα, aα
+
+ 0  = 0  1  aα, aα

+
+ 1  = 1 (B.61b)

Since { 0 〉α , 1 〉α } spans the number space for state α, (B.61b) implies
 aα, aα

+
+ = 1

which, combined with (B.39c-d), gives
 aα , aβ

+
+ = δαβ

 aα
+ , aβ

+
+ = 0  aα , aβ + = 0 ∀ α, β (B.61c)

Now, although (B.40f) still works if we enforce rigorously condition (B.40l), it is sometimes more conve-
nient to re-define cnα  &  dnα  to make explicit

aα
+ 1  = 0

To this end, let us examine all possible outcomes of the operators:
aα 0  = 0 aα 1  = 0 

aα
+ 0  = 1  aα

+ 1  = 0

aα
+
aα 0  = 0 aα

+
aα 1  = 1 

aα aα
+ 0  = 0  aα aα

+ 1  = 0

One solution, which can be easily checked, is
aα nα  = nα nα - 1  aα

+
nα  = (1 - nα) nα + 1  (B.66a)

→ aα
+
aα nα  = aα

+
nα nα - 1  = nα [ 1 - (nα - 1) ] nα 〉 = nα(2 - nα) nα 〉 = nα nα 〉

aα aα
+

nα  = aα(1 - nα) nα + 1  = (1 - nα) (nα + 1) nα 〉 = (1 - nα) nα 〉 

where we have used the relation
nα

2 = nα if nα = 0, 1

Owing to (B.61a), (B.40h) simplifies to



n0, n1, ... , n∞ 〉 = (a0
+
)
n0 0 0 ⊗ (a1

+
)
n1 0 1 ⊗ ... ⊗ (a∞

+
)
n∞ 0 ∞ (B.59)

Using the anti-commutators (B.39c-d), we have
aα n0, ... , nα, ... , n∞  = aα (a0

+
)
n0 0 0 ⊗ ... ⊗ (aα

+
)
nα 0 1 ⊗ ... ⊗ (a∞

+
)
n∞ 0 ∞

= (-)Sα (a0
+
)
n0 0 0 ⊗ ... ⊗ aα (aα

+
)
nα 0 1 ⊗ ... ⊗ (a∞

+
)
n∞ 0 ∞ (B.59a)

where

Sα = 
β= 0

α-1
nβ = number of exchanges aα made in order to reach nα 〉. (B.59b)

Using (B.66a), (B.59a) becomes
aα n0, ... , nα, ... , n∞  = (-)Sα nα n0, ... , nα - 1, ... , n∞  (B.69)

Similarly,

aα
+

n0, ... , nα, ... , n∞  = (-)Sα (1-nα) n0, ... , nα + 1, ... , n∞  (B.70)

Finally, since nα is a product of two operators, its exchange with any single operator will produce two 
sign changes that cancel out.   Hence

nα aβ
+
= aβ

+
nα nα aβ = aβ n


α ∀ α ≠ β

so that
nα n0, ... , nα, ... , n∞  = nα n0, ... , nα, ... , n∞  (B.70a)
aα aα

+
n0, ... , nα, ... , n∞  = (1-nα) n0, ... , nα, ... , n∞  (B.70b)

Needless to say, we still have the orthonormality & completeness relations
〈 n0, ... , nα, ... , n∞ n0 ', ... , nα ', ... , n∞ ' 〉 = δn0 n0' …δnα nα' …δn∞ n∞' (B.70c)


n0, ..., n∞

n0, ... , nα, ... , n∞   n0, ... , nα, ... , n∞ = 1 (B.70d)

Now, (B.39b) gives
k1, ... , kN (A) = ak1

+
…akN

+ 0 

        = ... , nk1, ... , nkN , ... 〉 (B.71a)
where we have made use of the convention that the list   k1, ... , kN  in k1, ... , kN (A) is always in 
ascending order [ see final paragraph of §B.3.0 ].  Hence,

 k1, ... , kN (A) = (-) ... , nk1, ... , nkN , ...  (B.71b)

Our next task is to write the N-representation of operators that are functions of the canonical operators 
pi , q i , sz i .

In general, the  N-representation (m) of an m-body fermion operator ON
(m)  is defined by

    (A) k1, ... , kN ON
(m)

k1 ', ... , kN ' 
(A)

=  ... , nk1, ... , nkN , ... 
(m)

... , nk1', ... , nkN' , ... 

     ∀ kj & kj '  j = 1, ..., N (B.71c)

Since ON
(m)  is invariant under particle permutations,

  k1, ... , kN ON
(m)

k1 ', ... , kN ' 
(A)

=  k1, ... , kN  ON
(m)

-1 k1 ', ... , kN ' 
(A)
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      = (-)  k1, ... , kN  ON
(m)

k1 ', ... , kN ' 
(A)

where (-)-1
= (-) since  & -1 are composed of the same number of 2-particle exchanges.

Thus, each signed term in (A) k1, ... , kN  gives the same contribution to the matrix element (B.71a).  

Since there are N ! terms in  (A) k1, ... , kN , which comes with a normalization constant 
1

N !
, we have

→ (A) k1, ... , kN ON
(m)

k1 ', ... , kN ' 
(A)

= N !  k1, ... , kN ON
(m)

k1 ', ... , kN ' 
(A)

=  k1, ... , kN ON
(m)

k1 ', ... , kN ' 
(-)

(B.71f)

where (B.33) was used.

Consider now the 1-body operator 

ON
(1)

= 
i= 1

N

O i O i = O
(1)pi , q i , sz i  (B.52)

Since O i operates only on the states of particle i, the orthonormality (B.23) gives

 k1, ... , kN O i k1 ', ... , kN '  =  ki O i ki ' 
j≠ i

δkj kj'

=  ki O
(1)

ki ' 
j≠ i

δkj kj' (B.72a)

which is exactly the same as (B.54b).

Setting
ki = α ki ' = α '

the non-vanishing matrix elements must take the form

 ... , ki , ... O i … , ki ', ...  =  ki O i ki '  =  α O
(1)

α '  (B.72b)

Since α & α ' are arbitrary, they will be at different positions in the ordered list.  Hence, the non-vanish-
ing matrix elements of (B.72a) takes the form

(A) ... , ki , ... ON
(1)

... , kp ', ... 
(A)

     =  ... , 1
α

, ... , 0
α'

, ... 
(1)

... , 0
α

, ... , 1
α'

, ...  [ α < α ' assumed. ]

    =  ... , ki , ... ON
(1)

... , kp ', ... 
(-)

     = (-)i p  ki O i kp ' 

   = (-)i p  α O
(1)

α '  (B.72c)

where i p is the permutation that brings p into position i.  

For  ... , kp ', ... (-)  or ... , 0
α

, ... , 1
α'

, ... , the relevant positions are as follows

…
i

0
α ……

p

1
α' …

Let
Si p = number of particles in positions between, but excluding, positions i  & p ( or α & α ' ).
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Then
i p  is composed of Si p  2-particle exchanges required to bring a particle at p to position i.

→ (-)i p = (-)Si p

Si p = Sαα' = 
β=α+1

α'-1
nβ 

      = Sα'
nα= 0

- Sα [ α < α ' ] (B.72d)

where [see (B.59b) ]

Sα = 
β= 0

α-1
nβ

Using (B.69) & (B.70), we have

aα
+
aα' ... , 0

α
, ... , 1

α'
, ...  = (-)Sα' aα

+ ... , 0
α

, , ... , 0
α'

, ... 

       = (-)Sα' (-)Sα ... , 1
α

, , ... , 0
α'

, ... 

       = (-)Sαα' ... , 1
α

, , ... , 0
α'

, ...  [ (B.72d) used. ] (B.72e)

We emphasize that in order to use (B.72d),  Sα' must be evaluated with nα = 0 so that aα' must execute 
before aα

+ .  Since α ≠ α ',  
aα
+
aα' = -aα' aα

+

Using (B.72e), we can reproduce (B.72c) by


(1)

=  α O
(1)

α '  aα
+
aα' + other terms that evaluate to zero (B.72f)

Although we have assumed α < α ', it is easy to check that (B.72e & f) also apply to α > α '.

For α = α ', the orthogonal condition (B.71c) implies
k1 ', ... , kN ' 〉 = k1, ... , kN  

i.e., we are dealing with the diagonal elements of ON
(1).   

Since
α = α ' →  i = p → (-)i p = 1

(B.71e) is therefore modified to give

   (A) k1, ... , kN ON
(1)

k1, ... , kN
(A)

=  k1, ... , kN ON
(1)

k1, ... , kN
(-)

= 
i= 1

N

 ki O i ki '  [ (-)i i = 1 ]

=
α

α O
(1)

α  (B.71g)

Using [ see (B.70b) ]

aα
+
aα ... , 1

α
, ...  = ... , 1

α
, ... 

we can reproduce (B.71g) by
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(1)

=
α

α O
(1)

α  aα
+
aα + off-diagonal terms (B.71h)

Combining ( B.71f & h ) gives


(1)

= 
α,α'

 α O
(1)

α '  aα
+
aα' (B.72)

for arbitrary states.  Note that (B.72) is exactly the same as (B.53) for bosons.

Obviously, the foregoing procedure can be applied to an arbitrary m-body operator ON
(m).  Consider then 

the 2-body operator

ON
(2)

= 
i< j

N (N-1) / 2
O i j =

1

2

i= 1

N


j (≠ i ) = 1

N

O i j O i j = O(2)pi , q i , sz i , pj , q j , sz j  (B.57)

Setting m = 2 in (B.71b) gives
(A) k1, ... , kN ON

(2)
k1 ', ... , kN ' 

(A)
=  k1, ... , kN ON

(2)
k1 ', ... , kN ' 

(-)
(B.73a)

Since O i j operates only on the states of particles i & j, the orthonormality (B.23) gives [ c.f. (B.71c) ]

 k1, ... , kN O i j k1 ', ... , kN '  =  ki kj O i j ki ' kj ' 
m≠ i , n≠j

δkm km' δkn kn'

=  ki kj O
(2)

ki ' kj ' 
m≠ i , n≠j

δkm km' δkn kn' (B.73b)

The nonvanishing matrix elements are of the form [ c.f. (B.72b) ]

 ... , ki , ... , kj, ... O i j … , ki ', ... , kj ', ...  =  ki kj O i j ki ' kj '  (B.73c)

Setting
ki = α kp ' = α '

kj = β kq ' = β ' [  α < β , α ' < β ' ]
so that the nonvanishing matrix elements of (B.72a) take the form

    (A) ... , ki , ... , kj, ... ON
(2)

… , kp ', ... , kq ', ... 
(A)

=  ... , 1
α

, ..., 1
β

, ... , 0
α'

, ... , 0
β'

, ... 
(2)

... , 0
α

, ... , 0
β

, ... , 1
α'

, ... , 1
β'

, ...  (B.72d)

=  ... , ki , ... , kj , ... ON
(2)

… , kp ', ... , kq ', ... 
(-)

= (-)i p, j q   α β O
(2)

α 'β '  -  α β O
(2)

β 'α '   [  α < β , α ' < β ' ] (B.72e)

where i p, j q is the permutation that brings i to p & j to q.

For  … , kp ', ... , kq ', ... (-)  or ... , 0
α

, ... , 0
β

, ... , 1
α'

, ... , 1
β'

, ...  , the relevant positions are as follows

…
i

0
α …

j

0
β ……

p

1
α' …

q

1
β' …

If we move p→ i  first and then q→ j .

 i p, j q = Sα' - Sα
nβ= 0

+ Sβ'
nα'= 0

- Sβ (B.72f)

Using (B.69) & (B.70), we have

aα
+
aβ
+
aβ' a


α' ... , 0

α
, ... , 1

α'
, ... , 0

β
, ... , 1

β'
, ...  = (-)Sα' aα

+
aβ
+
aβ' ... , 0

α
, ... , 0

α'
, ... , 0

β
, ... , 1

β'
, ... 
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       = (-)Sα' (-)Sβ' aα
+
aβ
+ ... , 0

α
, ... , 0

α'
, ... , 0

β
, ... , 0

β'
, ... 

       = (-)Sα' (-)Sβ' (-)Sβ aα
+ ... , 0

α
, ... , 0

α'
, ... , 0

β
, ... , 1

β'
, ... 

       = (-)Sα' (-)Sβ' (-)Sβ (-)Sα ... , 0
α

, ... , 0
α'

, ... , 0
β

, ... , 1
β'

, ...  (B.72g)

where all  Sj ' s are the same as those (B.72f).  Note that aα' has to act 1st in order for Sβ' to be evaluated 
with nα' = 0.

(B.72e) can therefore be duplicated by

    (2) =  α β O
(2)

α 'β '  aα
+
aβ
+
aβ' a


α' +  α β O

(2)
β 'α '  aα

+
aβ
+
aα' aβ' 

    + other terms that evaluate to zero (B.73a)
where, as in (B.72f), all assumptions on the relative positions of α, β, α ', β '  can be removed.

For fermions, we cannot have  α = β or α ' = β ' since they require nα = 2 or nα' = 2.  Although we can have 
α = α ', or β = β ', or both, they are readily covered by (B.73a).  In this absence of diagonal components, 
we can generalize (B.73a) to


(2)

=
1

2


α,β,α',β'

 α β O
(2)

α 'β '  aα
+
aβ
+
aβ' a


α' (B.73)

where, like bosons, the factor 
1

2
 comes from removing the condition α < β.
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